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Introduction

The notion of completeness is one of the most important in mathematical logic since it

links semantics with syntax. For instance in the classical propositional logic the notion of

tautology can be given in two different ways. On the one hand we have the set of semantic

tautologies which are those formulas τ such that, for each valuation v into the Boolean

algebra {0,1}, v(τ) = 1, in symbols |= τ . On the other hand, we have the set of syntactic

tautologies which are those formulas which can be derived from axioms by substitution

and modus pones, in symbols τ is tautology if ` τ . Thanks to the completeness theorem

we know that these two approaches give the same set of formulas. With the birth of non-

classical logic one wondered if the completeness theorem was still valid. In this thesis the

attention is focused on the completeness in  Lukasiewicz propositional logic  L∞ that is a

non-classical logic introduced by Jan  Lukasiewicz and Alfred Tarski in 1930. As in classical

propositional logic, in  L∞ we can define the two sets of semantic and syntactic tautologies.

In 1958 Alan Rose and J. Barkley Rosser give a proof of completeness theorem in  L∞.

However, even though we have the completeness for the set of tautologies both in classical

propositional logic and in  Lukasiewicz propositional logic, things change if we refer to the

strong completeness. Given a nonempty set of formulas Θ we can refer to deductive closure

of Θ in two different ways. We say that a formula φ is a semantic consequence of Θ, in

symbols Θ |= φ, if for each valuation v such that v(θ) = 1, for all θ ∈ Θ then v(φ) = 1

(this is the Bolzano-Tarski paradigm). On the other hand, φ is a syntactic consequence

of Θ, in symbols Θ ` φ, if there is a proof of φ from Θ. In classical logic the two sets of

semantic and syntactic consequences coincide, while in  L∞, as we shall see, these two sets

do not coincide in general. The reason why we do not have the strong completeness in  L∞

lies in the notion of semantic consequence which turns out to be unsuitable. In fact when
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we consider the semantic consequences of a set Θ of formulas we refer to valuations which

can be seen has homomorphism from the Lindenbaum algebra L of  L∞ to the MV -algebra

[0,1]. In particular there is a one-one correspondence between the set of all valuations and

the set of maximal ideals of L and each valuation can be seen as a quotient of L respect

to a maximal ideal M . In Boolean algebras, the maximal ideals have the property of

being irreducible, while maximal ideals of MV -algebras do not have this property which

is crucial for completeness. Suppose that Θ ` φ, with Θ nonempty set of formulas, then

the class [φ]/I(Θ) = 1 in the quotient L/I(Θ), where I(Θ) is the ideal of L generated by

[Θ]. Denoting with A the quotient L/I(Θ) and with M(A) the set of its maximal ideals,

we can consider the family of quotients {A/M |M ∈M(A)} and the homomorphism

β : a = [α]/I(Θ) ∈ A→ (a/M |M ∈M(A)) ∈
∏

M∈M(A)

A/M

Requiring completeness is equivalent to requiring that the map β is injective which is

equivalent to ask that I(Θ) =
⋂
M̄⊆I(Θ) M̄ with M̄ maximal ideal of L. But whenever we

consider a proper ideal J of an MV -algebra, it is not always true that it coincides with the

intersection of all maximal ideals which contains it. In Boolean algebras this property is

satisfied by the maximal ideals since they coincide with the irreducible ideals. Moreover,

maximal ideals in MV -algebras are ’too big’ and, therefore, they give ’too small’ quotients.

This entails a loss of information in a sense that will be clarified. Therefore, we want to

find a family of ideals which gives us bigger quotients and could give us a new notion of

valuation that turns out to be strongly complete. As we shall see, the prime ideals of any

MV -algebra are irreducible, i.e. each proper ideal of A is the intersection of all prime ideals

which contain it. Thus, through the study and the characterization of prime ideals of the

Lindenbaum algebra L of  L∞ we shall give new enriched notions of valuation and semantic

consequence which could give us the completeness in the strong sense.

The thesis is structured as follows.

In Chapter 1 we give some necessary basic notions concerning MV -algebras, in particular

we give an introduction to free MV -algebras which will be characterized in the subsequent

chapter. Then we give some basic notions about  Lukasiewicz propositional calculus and

the connections between the Lindenbaum algebra and the theories.
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Thanks to McNaughton theorem the free MV -algebras over k-generators can be seen as the

MV -algebra of McNaughton functions Mk given by piecewise linear functions with integer

coefficients defined over [0,1]k with values in [0,1]. In Chapter 2 we study the ideals of

the MV -algebra of McNaughton functions M given by all McNaughton function defined in

[0,1]ω, giving some results concerning quotients of M . In particular we give a geometrical

characterization for prime ideals of Mn, with n ∈ N.

In Chapter 3 we face the problem of completeness. First of all we give an algebraic interpre-

tation of the sets of semantic and syntactic consequences of a set Θ of formulas in order to

give some necessary and sufficient conditions for these two sets to coincide. What we find

is that the completeness theorem is satisfied if and only if the Lindenbaum algebra of Θ is

semisimple which is equivalent to say that the ideal of the Lindenbaum algebra L generated

by [Θ] coincides with the intersection of all maximal ideals which contain it. Subsequently

we give the notion of differential valuations which can be seen as an evolution of usual

valuations. These new valuations are linked with prime ideals and through them we give a

new notion of semantic consequence which satisfies the strong completeness theorem.
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Chapter 1

Preliminary notions

The following chapter is useful to be in touch with the argument we are treating. It is known

that classical logic gives rise to the study of Boolean algebras, similarly MV -algebras are

the algebraic semantics of  Lukasiewicz many-valued logic, as a matter of fact the letters

’MV’ stand for many-valued logic.

Thus, in this chapter some basic notions about MV -algebras, concerning both the arith-

metics and the structure of these algebras, are explained. In particular we shall introduce

the free MV -algebras whose study will be deepened in the next chapter giving an impor-

tant characterization for these particular MV -algebras. Moreover, in the last sections, we

shall give an introduction to  Lukasiewicz propositional calculus  L∞ reserving a particular

interest for the Lindenbaum Algebra and for the theories.

For all the unexplained notions we refer to [3], [2] and [8].

1.1 MV -algebras

Definition 1.1.1. An MV -algebra is an algebra 〈A,⊕,¬, 0 〉 with a binary operation ⊕, a

unary operation ¬ and a constant 0 satisfying the following equations:

MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z

MV2) x⊕ y = y ⊕ x

MV3) x⊕ 0 = x

MV4) ¬¬x = x

6



1 – Preliminary notions

MV5) x⊕ ¬0 = ¬0

MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

In particular, axioms MV1)-MV3) state that 〈A,⊕,¬, 0〉 is an abelian monoid. The

singleton {0} is a trivial example of MV -algebra. An MV-Algebra is nontriavial if and only

if its universe has more than one element. We shall denote any MV -algebra 〈A,⊕,¬, 0 〉

with its universe A.

Example 1.1.2. The real unit interval [0,1] with the following operations

x⊕ y =def min(1, x+ y)

¬x =def 1− x

is an MV -algebra, denoted by [0,1].

Example 1.1.3. If 〈A,∨,∧,−, 0〉 is a Boolean algebra, then 〈A,∨,−,0〉 is an MV -algebra

where ∨, − and 0 denote the joint, the complement and the smallest element in A, respec-

tively.

Example 1.1.4. Given an MV -algebra A and a non-empty set X, the set AX of all

functions f : X → A is an MV -algebra with the operations ⊕ and ¬ defined pointwise as

follows

(f ⊕ g)(x) = f(x)⊕ g(x)

(¬f)(x) = ¬f(x)

In any MV -algebra A we define the constant 1 and the operations � and 	 as follows:

1. 1 =def ¬0

2. x� y =def ¬(¬x⊕ ¬y)

3. x	 y =def x� ¬y

Recalling the example 1.1.2, in the MV -algebra [0,1] we have x � y = max(0, x + y − 1)

and x	 y = max(0, x− y). Thus, an MV -algebra is nontrivial if and only if 0 /= 1 and the

following identities hold for every x, y ∈ A:
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1 – Preliminary notions

MV7) ¬1 = 0

MV8) x⊕ y = ¬(¬x� ¬y)

MV9) x⊕ ¬x = 1

Axioms MV5) and MV6) can be written as:

MV5’) x⊕ 1 = 1

MV6’) (x	 y)⊕ y = (y 	 x)⊕ x

Lemma 1.1.5. Considering an MV -algebra A, for any two elements x, y ∈ A the following

are equivalent

(i) ¬x⊕ y = 1

(ii) x� ¬y = 0

(iii) y = x⊕ (y 	 x)

(iv) there is an element z ∈ A such that x⊕ z = y

Proof. (i)→ (ii) It follows from axioms MV4) and MV7).

(ii)→ (iii) By MV3) and MV6’).

(iii)→ (iv) It is sufficient to take z = y 	 x.

(iv)→ (i) By MV9), ¬x⊕ x⊕ z = 1.

For any two elements x, y ∈ A, we can defined the relation

x ≤ y

saying that x ≤ y if and only if x and y satisfy the equivalent conditions of lemma 1.1.5.

One can easily observe that ≤ is a partial order, called the natural order of A: the reflexivity

is equivalent to MV9), antisymmetry follows from conditions (ii) and (iii) of lemma 1.1.5,

and transitivity follows from conditions (iv).

Definition 1.1.6. An MV -algebra whose natural order is total is called an MV-chain.
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1 – Preliminary notions

Remark 1.1.7. Note that, by lemma 1.1.5(iv), the order of the MV -chain [0,1] coincides

with the natural order of the real numbers.

Lemma 1.1.8. Let A be an MV -algebra. For each a ∈ A, ¬a is the unique solution of the

simultaneous equations: {
a⊕ x = 1

a� x = 0

Proof. By lemma 1.1.5, from these two equations ¬a ≤ x and ¬a ≥ x. Thus, x = ¬a.

Lemma 1.1.9. In every MV -algebra A the natural order ≤ has the following properties:

(i) x ≤ y iff ¬y ≤ ¬x

(ii) if x ≤ y then for each z ∈ A, x⊕ z ≤ y ⊕ z and x� z ≤ y � z

(iii) x� y ≤ z iff x ≤ ¬y ⊕ z

Proof. (i). It follows from lemma 1.1.5(i), since ¬x⊕ y = ¬¬y ⊕ ¬x.

(ii). The monotonicity of ⊕ is an immediate consequence of lemma 1.1.5(iv); using (i) it

is easy to check the monotonicity of �.

(iii). It is sufficient to note that x�y ≤ z is equivalent to 1 = ¬(x�y)⊕z = ¬x⊕¬y⊕z.

Proposition 1.1.10. On each MV -algebra A the natural order determines a lattice struc-

ture. Specifically, the join x ∨ y and the meet x ∧ y of the elements x and y are given

by:

(i) x ∨ y = (x� ¬y)⊕ y = (x	 y)⊕ y

(ii) x ∧ y = ¬(¬x ∨ ¬y) = x	 (¬y ⊕ y)

Proof. To prove (i), by MV6’), MV9) and lemma 1.1.9(ii), we have:

x ≤ (x	 y)⊕ y

y ≤ (x	 y)⊕ y.
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Suppose that x ≤ z and y ≤ z. Then, by lemma 1.1.5, ¬x ⊕ z = 1 and z = (z 	 y) ⊕ y.

Thus by MV6’):

(¬(x	 y)⊕ y)⊕ z = (¬(x	 y)	 y)⊕ y ⊕ (z 	 y)

= (y 	 ¬(x	 y))⊕ ¬(x	 y)⊕ (z 	 y)

= (y 	 ¬(x	 y))⊕ ¬x⊕ y ⊕ (z 	 y)

= (y 	 ¬(x	 y))⊕ ¬x⊕ z = 1

It follows that (x 	 y) ⊕ y ≤ z, which completes the proof of (i). Condition (ii) is a

consequence of (i) combined with lemma 1.1.9.

Proposition 1.1.11. The following equations hold in every MV -algebra:

(i) x� (y ∨ z) = (x� y) ∨ (x� z)

(ii) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z)

Proof. By MV6’) and lemma 1.1.9(ii), x� y ≤ x� (y∨ z) and x� z ≤ x� (y∨ z). Suppose

that x � y ≤ t and x � z ≤ t. Then by lemma 1.1.9(iii), y ≤ ¬x � t and z ≤ ¬x ⊕ t,

whence y ∨ z ≤ ¬x ⊕ t. One more application of lemma 1.1.9(iii) yields (y ∨ z) � x ≤ t,

which completes the proof of (i). It is easy to see that (ii) is a consequence of (i) using

lemma 1.1.9(i), together with MV4) and MV8).

Definition 1.1.12. Let A be an MV -algebra. For each x ∈ A and each integer n ≥ 0

0x = 0

(n+ 1)x = nx⊕ x

Lemma 1.1.13. Let x and y be elements of an MV -algebra A. If x ∧ y = 0 then for each

integer n ≥ 0, nx ∧ ny = 0.

Proof. Suppose that x ∧ y = 0. By monotonicity (lemma 1.1.9) and distributivity of ∧

(proposition 1.1.11), we obtain x = x ⊕ (x ∧ y) = (x ⊕ x) ∧ (x ⊕ y) ≥ 2x ∧ 2y, whence

0 = x∧ y ≥ 2x∧ 2y. It follows that 0 = 2x∧ 2y = 4x∧ 4y = 8x∧ 8y = . . . . The conclusion

follows from nx ∧ ny ≤ 2nx ∧ 2ny = 0.
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1 – Preliminary notions

Definition 1.1.14. A subalgebra of an MV -algebra is a subset B of A containing the zero

element of A and closed under the operations of A.

Recalling the example 1.1.2, for each integer n ≥ 2, the n-element sets:

Ln =def {0, 1/(n− 1), . . . , (n− 2)/(n− 2), 1}

yield examples of subalgebras of [0,1].

Recalling the example 1.1.4, the set of continuous functions from [0,1] into [0,1] forms a

subalgebra of the MV -algebra [0,1]
[0,1]

.

Definition 1.1.15. Let A and B be MV -algebras. A function h : A → B is a homomor-

phism if and only if, for each x, y ∈ A, it satisfies the following conditions:

(i) h(0) = 0

(ii) h(x⊕ y) = h(x)⊕ h(y)

(iii) h(¬x) = ¬h(x)

If h is one-one we say that h is a monomorphism. If h : A→ B is onto B we say that h is

surjective. By isomorphism we shall mean a surjective one-one homomorphism. If there is

an isomorphism from A onto B, we write A ∼= B.

Definition 1.1.16. Given a homomorphism h : A → B, the kernel of h is defined as

follows

Ker(h) =def h
−1(0) = {a ∈ A | h(a) = 0}

Definition 1.1.17. A set I ⊆ A is an ideal iff the following conditions are satisfied:

(i) 0 ∈ I

(ii) if x, y ∈ I then x⊕ y ∈ I

(iii) if x ∈ I and y ∈ A, with y ≤ x then y ∈ I

The intersection of any family of ideals of A is still an ideal of A. Let W be a generic subset

of A, the intersection of all ideals J ⊇ W of A is always an ideal and is called the ideal
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1 – Preliminary notions

generated by W and is denoted by 〈W 〉. An ideal I is proper iff I /= A; I is prime iff is

proper and given x, y ∈ A either x	y ∈ I or y	x ∈ I; I is maximal iff is proper and there

is no proper ideal J ⊂ A such that I ⊂ J , i.e for each ideal J /= I such that I ⊂ J then

J = A. We denote with I(A),P(A) and M(A) the sets of ideals, prime ideals and maximal

ideals of A, respectively.

Lemma 1.1.18. Let W ba a subset of an MV -algebra A. If W = ∅ then 〈W 〉 = {0}. If

W /= ∅, then

〈W 〉 = {x ∈ A | x ≤ w1 ⊕ · · · ⊕ wk, for some w1, . . . wk ∈W}

For each element z ∈ A, the ideal 〈z〉 = 〈{z}〉 = {x ∈ A | nz ≥ x for some integer n ≥ 0}

is called the principal ideal generated by z and, for each a ∈ A and J ideal of A:

〈J ∪ {z}〉 = {x ∈ A | x ≤ nz ⊕ a, for some n ∈ N and a ∈ J}

Proposition 1.1.19. For any proper ideal J of an MV -algebra A the following conditions

are equivalent

(i) J is a maximal ideal of A

(ii) for each x ∈ A, x /∈ J iff ¬nx ∈ J for some integer n ≥ 1.

Proof. (i) → (ii). Suppose that J is a maximal ideal of A. If x /∈ J , then 〈{x} ∪ J〉 = A

and, by lemma 1.1.18, 1 = nx⊕ a for some integer n ≥ 1 and a ∈ J . Then by lemma 1.1.5

¬xn ≤ a ∈ J whence by definition of ideal, ¬nx ∈ J . Conversely, if x ∈ J , then nx ∈ J for

each integer n ≥ 1; since J is proper ¬nx /∈ J .

(ii) → (i). Let K /= J be an ideal of A such that J ⊆ K. For every x ∈ K \ J it follows,

from the hypothesis, that ¬nx ∈ J for some integer n ≥ 1. Hence 1 = nx⊕ ¬nx ∈ K and

K = A.

Lemma 1.1.20. Let A, B be MV -algebras, and h : A → B a homomorphism. Then the

following properties hold:

(i) For each ideal J of B, the set h−1(J) =def {x ∈ A | h(x) ∈ J} is an ideal of A.

Thus in particular, Ker(h) is an ideal of A.
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1 – Preliminary notions

(ii) h(x) ≤ h(y) iff x	 y ∈ Ker(h)

(iii) h is injective iff Ker(h) = 0

(iv) Ker(h) /= A iff B is nontrivial

(v) Ker(h) is a prime ideal of A iff B is nontrivial and the image h(A), as a subalgebra

of B, is an MV-chain.

Proposition 1.1.21. Let I be an ideal of an MV -algebra A. Then the binary relation ≡I

on A defined by, for each x, y ∈ A:

x ≡I y iff (x	 y)⊕ (y 	 x) ∈ I

is a congruence relation, i.e. ≡I is an equivalence relation such that x ≡I y and t ≡I z

imply ¬x ≡I ¬y and x⊕ t ≡I y ⊕ z. Moreover I = {x ∈ A | x ≡I 0} Conversely if ≡ is a

congruence on A, then {x ∈ A | x ≡ 0} is an ideal, and x ≡ y iff (x 	 y) ⊕ (y 	 x) ≡ 0.

Therefore, the correspondence I →≡I is a bijection from the set of ideals of A onto the set

of congruences on A.

Given x ∈ A, we denote with x/I the equivalence class of x respect to ≡I and with

A/I the quotient set A/≡I . Since ≡I is a congruence, the set A/I inherits the structure of

MV -algebra from A defining the following operations:

¬(x/I) =def (¬x/I)

x/I ⊕ y/I =def (x⊕ y)/I

We denote with 〈A/I,⊕,¬, 0/I〉 the quotient of A by the ideal I, then the correspondence

x → x/I defines a surjective homomorphism hI called the natural homomorphism from

A onto the quotient A/I. Note that Ker(hI) = I. The next lemma is a consequence of

lemma 1.1.20.

Lemma 1.1.22. If A, B and C are MV -algebras, and f : A → B and g : A → C are

surjective homomorphisms, then Ker(f) ⊆ Ker(g) if and only if there is a surjective ho-

momorphism h : B → C such that h ◦ f = g. This homomorphism h is an isomorphism if

and only if Ker(f) = Ker(g).
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1 – Preliminary notions

Theorem 1.1.23. Let A and B be MV -algebras. If h : A → B is a surjective homomor-

phism, then there is an isomorphism f : A/Ker(h)→ B such that f(x/Ker(h)) = h(x) for

all x ∈ A.

Proposition 1.1.24. If an MV -algebra A is a MV -chain then all proper ideals of A are

prime.

Proof. Let I be a proper ideal of A. Since hI : A→ A/I is a surjective homomorphism and

A is a MV -chain, A/I is an MV -chain. Whence, by lemma 1.1.20(v), I must be a prime

ideal of A.

Proposition 1.1.25. Let J be an ideal of an MV -algebra A. Then the map I → hJ(I)

determines an inclusion preserving one-one correspondence between the ideals of A con-

taining J and the ideals of the quotient MV -algebra A/J . The inverse map also preserves

inclusions and is obtained by taking the inverse image hJ
−1(K) of each ideal K of A/J .

Proof. Let I be an ideal of A such that J ⊆ I. Since hJ maps A onto A/J and Ker(hJ) =

J ⊆ I, by lemma 1.1.20(ii) and MV6’), it follows that hJ(I) ∈ I(A/J) and hJ
−1(hJ(I)) ⊆ I.

Since the converse inclusion holds for all surjective mappings, then I = hJ
−1(hJ(I)). On

the other hand, by lemma 1.1.20(i), hJ
−1(K) ∈ I(A) for each K ∈ I(A/J). To complete the

proof it is sufficient to observe that J = hJ
−1({0}) ⊆ hJ−1(K) and hJ(hJ

−1(K)) = K.

If A is an MV-chain, then the set I(A) of ideals of A is totally ordered by inclusion. Indeed,

if I and J were ideals of A such that I /⊆ J and J /⊆ I then there would be elements a, b ∈ A

such that a ∈ I/J and b ∈ J/I whence a /≤ b and b /≤ a, which is impossible.

Theorem 1.1.26.

(i) Every proper ideal J of an MV -algebra A that contains a prime ideal is prime.

(ii) For each prime ideal J of A, the set {I ∈ I(A) | J ⊆ I} is totally ordered by

inclusion.

Proof. Let J be a prime ideal of A, by lemma 1.1.20(v), the quotient A/J is an MV -chain

thus, by proposition 1.1.24, all proper ideals of A/J are prime and are totally ordered by

14



1 – Preliminary notions

inclusion. This, together with proposition 1.1.25, implies (ii). In order to prove (i), let

us note that if I is a proper ideal of A such that J ⊆ I and, again by proposition 1.1.25,

I = hJ
−1(hJ(I)), hence I is a prime ideal of A/J .

Corollary 1.1.27. Every prime ideal J of an MV -algebra A is contained in a unique

maximal ideal of A.

Proof. Consider the set

H =def {I ∈ I(A) | I /= A and J ⊆ I}

Since H is totally ordered by inclusion, the set M = ∪I∈H I is an ideal of A. M is also

a proper ideal of A because 1 /∈ M . Suppose that there exists K proper ideal of A such

that M ⊆ K, therefore J ⊆ K and K ∈ H. Hence: K ⊆ ∪I∈H I = M ⊆ K. This implies

K = M , so M is the only maximal ideal containing J .

Lemma 1.1.28. For every MV -algebra A and ideal J /= A the following conditions are

equivalent:

(i) J is prime;

(ii) for all x, y ∈ A if x ∧ y = 0 then x ∈ J or y ∈ J ;

(iii) for all x, y ∈ A if x ∧ y ∈ J then x ∈ J or y ∈ J ;

(iv) if P and Q are ideals of A and P ∩Q ⊆ J then P ⊆ J or Q ⊆ J ;

(v) if P and Q are ideals of A and P ∩Q = J then P = J or Q = J ;

(vi) if P and Q are ideals of A containing J then P ⊆ Q or Q ⊆ P ;

(vii) for all x, y ∈ A either x→ y ∈ J∗ or y → x ∈ J∗, where J∗ is the filter given by

the set {¬z | z ∈ J};

(viii) for all x, y ∈ A either x	 y ∈ J or y 	 x ∈ J .

The following proposition plays an important role in the proof of Chang’s Subdirect

Representation Theorem 1.2.3.
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Proposition 1.1.29. Let A be an MV -algebra, J an ideal of A and a ∈ A \J . Then there

is a prime ideal P of A such that J ⊆ P and a /∈ P .

Proof. By an application of Zorn’s Lemma it is possible to show that there is an ideal

I of A such that I is maximal with respect to the property that J ⊆ I and a /∈ I. In

order to show that I is a prime ideal, let x and y be element of A and suppose that both

x	y /∈ I and y	x /∈ I (absurdum hypothesis). Then the ideal generated by I and x	y must

contain the element a. By lemma 1.1.18, a ≤ s⊕ p(x	 y) for some s ∈ I and some integer

p ≥ 1. Similarly, there is an element t ∈ I and an integer q ≥ 1 such that a ≤ t⊕ q(y 	 x).

Let u = s ⊕ t and n = max(p, q). Then u ∈ I, a ≤ u ⊕ n(x 	 y) and a ≤ u ⊕ (y 	 x). It

follows that a ≤ (u ⊕ n(x 	 y)) ∧ (u ⊕ n(y 	 x)) = u ⊕ (n(x 	 y) ∧ n(y 	 x)) = u. Hence

a ∈ I, a contradiction.

Corollary 1.1.30. Every proper ideal of an MV -algebra is an intersection of prime ideals.

Corollary 1.1.31. Every nontrivial MV -algebra has a maximal ideal.

1.2 Subdirect representation of MV -algebras

The direct product of family {Ai}i∈I of MV -algebras, where I denotes a nonempty set, is

the MV -algebra, denoted with
∏
i∈I Ai, obtained by defining pointwise MV -operations on

the set-theoretical cartesian product of the family. In other words,
∏
i∈I Ai is the space of

the functions f : I →
⋃
i∈I Ai such that f(i) ∈ Ai for all i ∈ I, with the two operations ¬

and ⊕ defined as follows:

(¬f)(i) =def ¬f(i) (f ⊕ g)(i) =def (f(i)⊕ g(i))

The zero element of
∏
i∈I Ai is the function i ∈ I → 0i ∈ Ai.

For each j ∈ I it is possible to define a homomorphism onto Aj :

πj :
∏
i∈I

Ai → Aj such that πj(f) =def f(j)

This homomorphism is called the jth projection function. In particular, for each MV -

algebra A and nonempty set X, the MV -algebra AX is the direct product of the family

{Ax}x∈X with Ax = A for all x ∈ X.

16
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Definition 1.2.1. An MV -algebra A is a subdirect product of a family {Ai}i∈I of MV -

algebras iff there exists a one-one homomorphism h : A→
∏
i∈I Ai such that for each j ∈ I,

the composite map πj ◦ h is a homomorphism onto Aj .

In other words if A is a subdirect product of the family {Ai}i∈I , then A is isomorphic

to the subalgebra h(A) of
∏
i∈I Ai and, moreover, the restriction to h(A) of each projection

is a surjective mapping. The following result is a particular case of Birkhoff’s Theorem.

Theorem 1.2.2. An MV -algebra A is a subdirect product of a family {Ai}i∈I iff there is

a family {Ji}i∈I of ideals of A such that

(i) Ai ∼= A/Ji for each i ∈ I

(ii)
⋂
i∈I Ji = {0}

Proof. Suppose that A is a subdirect product of a family {Ai}i∈I of MV -algebras, let h

be a one-one homomorphism given in definition 1.2.1. Consider Jj := Ker(πj ◦ h). By

theorem 1.1.23, Aj ∼= A/Jj . If x ∈
⋂
i∈I Ji then πj(h(x)) = 0 for all j. Then h(x) = 0, and

since h is injective x = 0. Therefore
⋂
i∈I Ji = {0}.

Conversely, suppose that {Ji}i∈I is a family of ideals of A satisfying condition (i) and (ii).

Let εi be the isomorphism given by condition (i). Let h be the function

h : A→
∏
i∈I

Ai

defined by stipulating that, for each x ∈ A

(h(x))(i) = εi(x/Ji)

by condition (ii), it follows that Ker(h) = {0}, whence by lemma 1.1.20(iii), h is injective.

Since for each i ∈ I the map a ∈ A→ a/Ji ∈ A/Ji is surjective, then pii ◦ h maps A onto

Ai. Thus, A is a subdirect product of the family {Ai}i∈I .

Theorem 1.2.3 (Chang’s Subdirect Representation Theorem). Every nontrivial MV -

algebra is a subdirect product of MV-chains.

Proof. By theorem 1.2.2 and lemma 1.1.20(v), an MV -algebra A is a subdirect product of

a family of MV -chains if and only if there is a family {Pi}i∈I of prime ideals of A such

that
⋂
i∈I Pi = {0}. Now it is sufficient to apply corollary 1.1.30 to the ideal {0}.

17
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1.3 MV -equations

An important consequence of Chang’s Subdirect Representation Theorem is that to verify

whether an equation holds in all MV -algebras it is sufficient to check that the equation

holds in all MV-chains.

Remark 1.3.1. An MV -equation τ = σ holds in an MV -algebra A if and only if the equation

(τ 	 σ) ⊕ (σ 	 τ) = 0 holds in A. Therefore it can be assumed that all the MV -equation

are of the form ρ = 0, where ρ is an MV -term.

Lemma 1.3.2. Let A, B, Ai (for i ∈ I) be MV -algebras:

(i) if A |= τ = σ then S |= τ = σ for each subalgebra S of A

(ii) if h : A → B is a homomorphism, then for each MV -term τ in the variables

xi, . . . , xn and each n-uple a1, . . . , an of elements of A we have h(τA(a1, . . . , an)) =

τB(h(a1), . . . , h(an)). In particular, when h is surjective, from A |= τ = σ it fol-

lows B |= τ = σ

(iii) if Ai |= τ = σ for each i ∈ I then
∏
i∈I Ai |= τ = σ

Theorem 1.3.3. Let A be a subdirect product of a family {Ai}i∈I of MV -algebras, let

τ = σ be an MV -equation. Then A |= τ = σ if and only if Ai |= τ = σ for each i ∈ I.

Corollary 1.3.4. An MV -equation is satisfied by all MV -algebras if and only if it is

satisfied by all MV -chains.

Corollary 1.3.4 becomes more significant in the light of Chang’s Completeness Theorem.

Theorem 1.3.5 (Chang’s Completeness Theorem). An equation holds in [0,1] if and only

if it holds in every MV -algebra.

Proof. See [3, 2.5.3] for details.

Thus, intuitevely, the two element structure {0,1} stands to Boolean algebras as the interval

[0,1] stands to MV -algebras.

18
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1.4 Free MV -algebras

FreeMV -algebras are ’universal’ objects: it can be shown that every finitely generatedMV -

algebra is isomorphic to a quotient of the free MV -algebra over n generators. Moreover,

another important property is that every equation satisfied in the free MV -algebra ω-

generated is also satisfied in every MV -algebra.

Let k be an arbitrary cardinal ≥ 1 and consider k distinct propositional variables

Xα with α < k (1.1)

Then each MV -term τ in the variables {Xα}α<k is a finite string of symbols over the

alphabet

{0, ¬, ⊕, (, ), Xα}α<k (1.2)

For any MV -algebra A the elements of Ak have the form

ā = (aα | α < k) (1.3)

where each aα with α < k is an element of A. We call αth projection the map πα : Ak → A

such that πα(ā) = aα. The set of projections of Ak is denoted by:

Projk
A =def {πα | α < k} (1.4)

Definition 1.4.1. For each term τ in the variables {Xα}α<k the term function

τA : Ak → A (1.5)

is given by induction on the complexity of τ as follows:

1. Xα
A =def πα

2. 0A is the constant function 0 on Ak

3. (¬ρ)A =def ¬A(ρA)

4. (ρ⊕ σ)A =def (ρA ⊕A σA)
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The set of all term functions over Ak is denoted by Termk
A. The operations ¬A and ⊕A

are defined pointwise as in example 1.1.4, thus Termk
A is a subalgebra of the MV -algebra

AA
k

.

Remark 1.4.2. Each element of Termk
A is a function depending on a finite number of

variables.

Lemma 1.4.3. For each MV -algebra A and for each cardinal k ≥ 1, Termk
A is the

smallest subalgebra of AA
k

containing Projk
A.

Definition 1.4.4. Let A be an MV -algebra and Y be a subset of elements generating A,

A is said to be free over Y and is denoted with FreeY iff for every MV -algebra B and

every function f : Y → B, f can be extended to a unique homomorphism F : A→ B.

Remark 1.4.5. For any two sets Y and X of the same cardinality k, if A is free over Y

and B is free over X then A ∼= B. Therefore, without ambiguity we can call A ”the” free

MV -algebra over k many generators and we can write A = Freek.

Proposition 1.4.6. For each cardinal k ≥ 1, Termk
[0,1] is the free MV -algebra over

Projk
[0,1], in symbols Termk

[0,1] ∼= Freek.

Proof. LetB be anMV -algebra and f : Projk
[0,1] → B be a function. Let b = (b0, . . . , bα, . . . )α≤k

be the element of Bk given by: bα = f(πα). We define a function φ that maps each term

τ , in the variables Xα with α < k, into the element τB(b) ∈ B, where τB ∈ TermB
k is the

term function evaluated in Bk, determined by τ . By theorem 1.3.5 it follows that:

[0,1] |= τ = ρ =⇒ B |= τ = ρ

thus,

ρB(b) = τB(b)

In other words, if ρ[0,1] = τ [0,1] ∈ Term[0,1]
k then φ maps ρ and τ in the same element in B.

Since φ(Xα) = XB
α (b) = bα = f(πα), the function φ determines an extension F of f . By

induction, it is easy to check that F is an homomorphism. In order to prove the uniqueness,

let g : Term
[0,1]
k → B be an homomorphism extending f . Since F and g coincide over a
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subalgebra of [0,1][0,1]k containing projections then by lemma 1.4.3 they coincide over all

Term
[0,1]
k .

The following proposition is an immediate consequence of lemma 1.1.20 and theo-

rem 1.1.23.

Proposition 1.4.7. Let k ≥ 1 be a cardinal and let A be an MV -algebra generated by ≤ k

elements. Then there is an ideal J of the Freek such that A is isomorphic to the quotient

algebra Freek/J .

In the next chapter we will give a more explicit description of elements of the algebras

Freek, introducing McNaughton functions and some of their properties.

1.5 An introduction to  Lukasiewicz propositional cal-
culus  L∞

In the  Lukasiewicz propositional calculus  L∞, the negation ¬ and implication→ are consid-

ered as the main connectives. Through them it is possible to define the other  Lukasiewicz

connectives � and ⊕ of conjuction and disjunction as follows

α⊕ β =def ¬α→ β

α� β =def ¬(¬α⊕ ¬β)

The set of propositional formulas is defined as in the Boolean case, from a denumerable set

of propositional variables V ar = {X0, X1, . . . , Xn, . . . }, through the connectives ¬ and →.

We denote with FORM the set of all formulas.

Definition 1.5.1. The set FORM is given inductively as follows:

(i) Each propositional variable Xk is a formula

(ii) If α is a formula, then (¬α) is a formula

(iii) If α and β are formulas, then (α→ β) is a formula

We shall denote with FORMn the set of all formulas built from a finite subset of n ≥ 1

variables in V ar.
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Definition 1.5.2. Let A be an MV -algebra. Then an A-valuation is a function

v : FORM → A

satisfying the following properties, with α and β formulas:

(i) v(¬α) =def ¬v(α)

(ii) v(α→ β) =def v(α)→ v(β)

Any A-valuation is uniquely determined by its values

v(X0), . . . , v(Xn), . . .

Given an A-valuation v, we say that v satisfies the formula α iff v(α) = 1; a formula α

is a tautology if and only if α is satisfied by all A-valuations. Let α and β be formulas,

then α and β are semantically A-equivalent iff v(α) = v(β) for all A-valuations v. Given

Θ ⊆ FORM , a formula α is a semantic A-consequence of Θ if and only if each A-valuation

v that satisfies all formulas in Θ also satisfies α. Therefore α is an A-tautology if and only

if α is a semantic A-consequence of the empty set.

Every formula α containing the variables X1, . . . , Xk can be transformed into an MV -

term τα in the same variables. Conversely, upon replacing every occurrence of the constant

0 in the term τ with the formula ¬(X → X), τ is transformed into a propositional formula

ατ . Therefore, there is a one-one correspondence between the propositional formulas and

MV -terms. The following result can be proved by induction on the number of connectives

in the formula α.

Proposition 1.5.3. Let A be an MV -algebra, let α be a formula and we denote with

V ar(α) ⊆ {Xi1 , . . . , Xik} the set of all variables occurring in α, then:

(i) For each A-valuation v, we have

v(α) = αA(v(Xi1), . . . , v(Xik))

where αA : Ak → A is the term function defined in definition 1.4.1.

(ii) A formula α is an A-tautology if and only if the MV -equation α = 1 holds in A.
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(iii) Two formulas α and β are semantically A-equivalent iff the equation α = β holds

in A iff αA = βA.

In  Lukasiewicz infinite-valued propositional calculus one considers propositional formu-

las equipped with the relation of semantic [0, 1]-equivalence. Next result is a consequence

of proposition 1.5.3 and it is an equivalent formulation of Chang’s Completeness Theorem

1.3.5.

Proposition 1.5.4. A formula α is a [0,1]-tautology iff, for every MV -algebra A, α is an

A-tautology. For any two formulas α and β we have α[0, 1] = β[0, 1] iff αA = βA for all

MV -algebras A.

Since we are particularly interested in [0,1]-valuations, we are going to use a lighter no-

tation calling valuation the [0,1]-valuation, tautology the [0,1]-tautology and with semantic

equivalence and consequence the [0,1]-equivalence and [0,1]-consequence.

For each Θ ⊆ FORM the set of semantic consequences of Θ will be denoted with Θ|=.

The set ∅|= will denote the set of all semantic tautologies, i.e. the set of all valid formulas.

Remark 1.5.5. Last results allow us to identify the term function α[0, 1] and the semantic

equivalence classes of propositional formulas.

Definition 1.5.6. An axiom of the  Lukasiewicz infinite-valued propositional calculus is a

formula that can be written in any of the following way:

(A1) α→ (β → α)

(A2) (α→ β)→ ((β → γ)→ (α→ γ))

(A3) ((α→ β)→ β)→ ((β → α)→ α)

(A4) (¬α→ ¬β)→ (β → α)

where α, β and γ are arbitrary formulas.

Definition 1.5.7. A proof from a set Θ ⊆ FORM is a finite string of formulas α1, . . . , αn

with n ≥ 1 such that for each i ≤ n:

(i) αi is an axiom, or
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(ii) αi belongs to Θ, or

(iii) there are j, k ∈ {1, . . . , i− 1} such that αk coincides with the formula (αj → αi)

(modus ponens)

The definition of proof allows us to give the definition of provable formula.

Definition 1.5.8. A formula α is provable from a set Θ ⊆ FORM , in symbols Θ ` α, if

there is a proof α1, . . . , αn from Θ such that αn = α.

By a syntactic tautology we shall mean a formula that is provable from the empty set. The

set of provable formulas from Θ will be denoted with Θ`. The set of syntactic tautologies

will be denoted with ∅`.

Theorem 1.5.9. The binary relation ≡ on FORM defined as follows

p ≡ q iff ` p↔ q

with p, q ∈ FORM , is an equivalence relation, called syntactic equivalence. Moreover the

relation ≡ satisfies the following properties

if α ≡ γ and β ≡ δ then (α→ β) ≡ (γ → δ)

if α ≡ β then ¬α ≡ ¬β.

The equivalence class of a formula p will be denoted by [p], i.e [p] =def {q ∈ FORM | q ≡

p}.

Remark 1.5.10. Given a set Θ ⊆ FORM it is possible to defined another congruence ≡Θ

in FORM as follows

p ≡Θ q iff Θ ` p↔ q

If Θ = ∅, the congruence ≡Θ coincide with the congruence ≡. Moreover, if p ≡ q then

p ≡Θ q (see [8, 5.11]).
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Theorem 1.5.11. The quotient set FORM/ ≡ is an MV -algebra equipped with the oper-

ations ¬ and ⊕ and the constant 0, defined by:

¬[α] =def [¬α]

[α]⊕ [β] =def [¬α→ β]

0 =def ¬[∅`] = {α ∈ FORM | there is β ∈ ∅` such that α ≡ ¬β}

Remark 1.5.12. Given a set Θ ⊆ FORM , the quotient FORM/≡Θ is an MV -algebra with

the operation ¬ and ⊕ and the constant 0 defined as in theorem 1.5.11.

The MV -algebra

L =def 〈FORM/ ≡, 0, ¬, ⊕〉 (1.6)

is called the Lindenbaum algebra of  Lukasiewicz infinite-valued propositional calculus.

Proposition 1.5.13. Given the set FORM with the relation ≡ of syntactic equivalence.

It follows that, for all p, q ∈ FORM :

p ≡ q iff for any valuation v, v(p) = v(q)

Proof.

p ≡ q iff v(p→ q) = 1 = v(q → p) for all valuations v

iff min(1, 1− v(p) + v(q)) = 1 = min(1, 1− v(q) + v(p)) for all v

iff v(q)− v(p) ≥ 0 and v(p)− v(q) ≥ 0 for all v

iff v(p) = v(q) for all v

Proposition 1.5.14. For every formulas p, p′, q ∈ FORM :

(i) [¬¬p] = [p]

(ii) [p→ q] = ¬[p]⊕ [q]

(iii) [¬p→ ¬q] = [q → p]

(iv) if [p] = [p′] then [q → p] = [q → p′]
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Proof. (i). It follows from theorem 1.5.11.

(ii). ¬[p]⊕ [q] = [¬p]⊕ [q] = [¬¬p→ q]. It is sufficient to show that [¬¬p→ q] = [p→ q].

Let v be a valuation, then:

v(¬¬p→ q) = min(1, 1− v(¬¬p) + v(q)) = min(1,1− v(p) + v(q))

thus, the thesis follows from proposition 1.5.13.

(iii). [¬p→ ¬q] = [p]⊕ [q]. On the other hand, [q → p] = [¬q]⊕ [p].

(iv). For each valuation v:

v(q → p) = min(1, 1− v(q) + v(p))

= min(1, 1− v(q)− v(p′)) = v(q → p′)

The thesis follows again from proposition 1.5.13.

Proposition 1.5.15. For all p, q ∈ FORM the following are equivalent:

(i) [p] ≤ [q] in the MV-order on the Lindenbaum algebra;

(ii) v(p) ≤ v(q) for every valuation v;

(iii) p→ q is valid.

Proof. (iii)↔ (ii).

p→ q is valid iff v(p→ q) = 1 for every v valuation

iff 1 = min(1, 1− v(p) + v(q)) for all v

iff 0 ≤ v(q)− v(p) for all v

(iii)↔ (i).

[p] ≤ [q] iff ¬[p]⊕ [q] = 1

iff [p→ q] = [∅`] by proposition 1.5.14

iff v(p→ q) = 1 for all v.

iff p→ q is valid.
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Proposition 1.5.16. For any q1, q2, . . . , qn ∈ FORM :

q1 → (q2 → (· · · (qn → p)) · · · ) is valid iff [q1]� · · · � [qn] ≤ [p] (1.7)

Proof. See [8, 4.11] for details.

1.6 Lindenbaum algebra and theories

In the section 1.5 we introduced the Lindenbaum algebra L of  L∞. In this section we will

give the notion of theory in  L∞ and we will give some results involving quotients of L.

Proposition 1.6.1. Up to isomorphism, the Lindenbaum algebra L coincides with the

free MV -algebra over the generating set {[X0], [X1], . . . } of logical equivalence classes of

propositional variables.

Proof. Let φ : L→ Termω
[0,1] be the map defined by stipulating that φ([α]) = α[0,1]. The

proposition 1.5.13 implies that φ is an isomorphism of the Lindenbaum algebra L onto

the term algebra Termω
[0,1]. In particular, the restriction of φ to the set of equivalence

classes of propositional variables gives us a bijection from this set onto the set of projection

functions {π0, π1, . . . }. The conclusion follows from proposition 1.4.6, thus L ∼= Freeω.

Definition 1.6.2. A theory of  Lukasiewicz infinite-valued propositional calculus is a set Θ

of formulas satisfying the following conditions:

(i) all axioms belong to Θ

(ii) if α ∈ Θ and (α→ β) ∈ Θ, then β ∈ Θ

Proposition 1.6.3. For each set Θ of formulas:

(i) Θ` is the smallest theory containing Θ.

(ii) Θ is a theory iff Θ = Θ`

(iii) if Θ is a theory and α ∈ Θ then
⋃

[α] ∈ Θ

Proof. (i). From the definition 1.6.2 it follow that Θ` is a theory. In order to prove that

Θ` is the smallest theory containing Θ, suppose that Γ is a theory such that Θ ⊆ Γ. By
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induction on n we shall prove that if α1, . . . , αn is a proof from Θ then αn ∈ Γ, thus

Θ` ⊆ Γ. If n = 1 then α1 is either an axiom or a formula in Θ, in both cases it follows

from definition 1.6.2 that α1 ∈ Γ. Suppose n > 1 and suppose that, for each proof from

Θ, α1, . . . , αm with m ≤ n, αm ∈ Γ. Suppose that α1, . . . , αn is a proof from Θ. If αn is

not an axiom and it does not belong to Θ, then there are i, j ∈ {1, . . . , n} such that αj

coincides with the formula (αi → αn) or, in other words αn follows by modus pones from

αi and αj . Since both α1, . . . , αi and α1, . . . , αj are proofs from Θ with i, j ≤ n it follows

that αi ∈ Γ and (αi → αj) ∈ Γ. Thus, always by definition 1.6.2, we have that αn ∈ Γ.

(ii). It follows from (i).

(iii). If β ∈ [α] then α→ β ∈ Θ` and, by the definition 1.6.2, β ∈ Θ.

Definition 1.6.4. For each set Θ ⊆ FORM we define the set Θ̂ as follows:

p ∈ Θ̂ iff q1 → (q2 → · · · (qn → p))) · · · ) is a tautology for some q1, . . . , qn ∈ Θ (1.8)

If Θ = ∅ then Θ̂ is the set of all tautologies.

Proposition 1.6.5. Given any two subsets Θ and Γ of FORM we have:

(i) each valid sentence belongs to Θ̂;

(ii) Θ ⊆ Θ̂;

(iii)
ˆ̂
Θ = Θ̂;

(iv) Γ ⊆ Θ implies Γ̂ ⊆ Θ̂

Proof. (i). If Θ = ∅, the conclusion is immediate and it follows from the definition. Suppose

Θ /= ∅ and let p ∈ Θ. By proposition 1.5.15, for every valid sentence t ∈ FORM it follows:

p→ t is valid iff [p] ≤ [t] iff [p] ≤ 1. Whence p→ t is valid, hence t ∈ Θ̂.

(ii). Suppose Θ /= ∅. For every p ∈ Θ the sentence p→ p is valid, then p ∈ Θ̂.

(iii). Assume Θ = ∅. Then p ∈ ˆ̂∅ iff q1 → (q2 → · · · (qn → p))) · · · ) is valid, with

q1, . . . , qn ∈ ∅̂, iff [q1] � · · · � [qn] ≤ [p], by proposition 1.5.16, iff [p] ≥ 1 iff p is valid

(proposition 1.5.15). Thus,
ˆ̂∅ = ∅̂. Suppose Θ /= ∅. In the light of (ii) it is sufficient to
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show that
ˆ̂
Θ ⊆ Θ̂. In order to prove this inclusion, first note that by (i), Θ̂ /= ∅. Whence by

(ii),
ˆ̂
Θ /= ∅. If p ∈ˆ̂Θ then the sentence q1 → (q2 → · · · (qn → p))) · · · ) is valid for suitable

q1, . . . , qn ∈ Θ̂. Then, by proposition 1.5.16, [q1] � · · · � [qn] ≤ [p]. For each qj ∈ Θ̂, with

j = 1, . . . , n, there are qj1, . . . , q
j
m(j) ∈ Θ such that qj1 → (qj2 → · · · (qm(j)j → qj))) · · · ) is

valid. Hence, always by proposition 1.5.16, [qj1] � · · · � [qjm(j)] ≤ [qj ]. Using monotony of

the operation �, it follows:
n∏
j=1

m(j)∏
i=1

[qji ] ≤
n∏
j=1

[qj ] ≤ [p]

By another application of proposition 1.5.16, it follows that p ∈ Θ̂.

Remark 1.6.6. One can observe that the set Θ̂ is a theory.

Definition 1.6.7. For any Θ ⊆ FORM , we denote with [Θ] the subset of L containing

the equivalence classes of formulas in Θ, i.e. the set

[Θ] = {[p] | p ∈ Θ} (1.9)

We denote with F (Θ) the filter generated by [Θ], i.e. the filter given by the intersection of

all filters in L containing the set [Θ], and with I(Θ) the ideal defined as follows

I(Θ) = F (Θ)∗ = {[p] ∈ L | ¬[p] ∈ F (Θ)} = {[p] ∈ L | [¬p] ∈ F (Θ)}

Proposition 1.6.8. For every p ∈ FORM and Θ ⊆ FORM the following are equivalent

(i) [p] ∈ F (Θ)

(ii) [p] ∈ F (Θ̂)

(iii) p ∈ Θ̂

Proof. If Θ = ∅ then Θ̂ is the set of all valid sentences, [Θ] = ∅ and F (Θ) = {[∅`]} ⊆ L.

F (Θ̂) is the filter generated by the set of all [p] such that p is valid, i.e. the filter generated

by the element [∅`] ∈ L. Therefore, F (Θ) = F (Θ̂) = {[∅`]}, and [p] ∈ {[∅`]} iff [p] = [∅`]

iff p is valid iff p ∈ Θ̂.

Suppose Θ /= ∅.

(i)→(ii) it follows from proposition 1.6.5
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1 – Preliminary notions

(iii)→(ii). Since p→ p is a valid sentence, if p ∈ Θ̂ then [p] ∈ F (Θ̂).

(i)↔(iii).

[p] ∈ F (Θ) iff [p] belongs to the filter generated byΘ/ ≡

iff [p] ≥ y1 � · · · � yn for suitable yi ∈ Θ/ ≡

iff [p] ≥ [q1]� · · · � [qn] for suitable qi ∈ Θ

iff q1 → (q2 → (. . . (qn → p)) . . . ) is valid

iff p ∈ Θ̂

(ii)→ (iii). [p] ∈ F (Θ̂) iff [q1]� · · · � [qn] ≤ [p] for suitable qi ∈ Θ̂ (as the previous point of

the proof). It follows that, as in proposition 1.6.5, for all i = 1, . . . , n there exists qij ∈ Θ

such that [qi1]� · · · � [qim(i)] ≤ [qi], then using monotony of multiplication

n∏
i=1

m(i)∏
j=1

[qj
i] ≤

n∏
i

[qi] ≤ [p]

which shows that p ∈ Θ̂ (proposition 1.5.16).

Proposition 1.6.9. For each filter F of L there is Θ ⊆ FORM such that F (Θ) = F and

Θ = Θ̂. In other words, for each filter F there is a theory Θ such that F (Θ) = F .

Proof. Define Θ = {p ∈ FORM | [p] ∈ F}. It is easy to observe that Θ /= ∅ since 1 ∈ F .

In order to prove that Θ = Θ̂, it is sufficient to check only the inclusion Θ̂ ⊆ Θ. For every

p ∈ FORM :

p ∈ Θ̂ =⇒ [q1]� · · · � [qn] ≤ [p] with qi ∈ Θ

=⇒ y1 � · · · � yn ≤ [p] with yi ∈ F

=⇒ y ≤ [p] for some y ∈ F

Thus [p] ∈ F , hence p ∈ Θ.

Corollary 1.6.10. For each ideal I of L there is a theory Θ ⊆ FORM such that I = I(Θ).

The quotient L/I(Θ) is called the Lindenbaum algebra of Θ and is denoted by L(Θ).
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Theorem 1.6.11. For every Θ ⊆ FORM

L/I(Θ) ∼= FORM/≡Θ

Proof. See [8, 5.13, 5.15] for details.

Moreover, the following result holds for every MV -algebra and it is a consequence of

proposition 1.6.1 and proposition 1.4.7.

Corollary 1.6.12. For every countable MV -algebra A there is a Θ ⊆ FORM such that:

A ∼= L/I(Θ)
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Chapter 2

MV -algebras of McNaughton
functions

In the previous chapter we introduced the notion of free MV -algebra over k-generators.

Our main interest is the study of ideals of these particular MV -algebras, in particular,

following [1], we shall give a characterization of prime ideals which will be an important

tool in subsequent discussions concerning the problem of strong completeness. In order to

pursue this aim we shall show some basic properties of the elements of Freek which depend

on whether these elements are continuous [0,1]-valued functions on a compact Hausdorff

topological space. In fact, from Chang’s completeness theorem, each element of the free

MV -algebra over k generators can be seen as piecewise linear continuous function with

integer coefficients, defined over the cube [0,1]k with values in [0,1]. These functions are

known as McNaughton’s functions. The converse is given by McNaughton’s theorem which

states an isomorphism between the MV -algebra of McNaughton’s functions over [0,1]k

with values in [0,1] and the free MV -algebra over k-generators. Whence, McNaughton’s

functions stand to MV -algebras as {0,1}-valued functions stand to Boolean algebras.

2.1 McNaughton functions

Definition 2.1.1. A map r : [0,1]n → [0,1] is a McNaughton function over the cube [0,1]n

iff r is continuous and there is a finite number of linear polynomials ρ1 . . . ρm, called linear

constituents, with integral coefficients such that, ∀x ∈ [0,1]n there is j ∈ {1, 2 . . . ,m} with

r(x) = ρj(x).
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2 – MV -algebras of McNaughton functions

The aforementioned can be generalized as follows:

Let k be an infinite cardinal, then a function g : [0,1]k → [0,1] is a McNaughton function

over [0,1]k iff there are ordinals α(0) < · · · < α(m − 1), with m ∈ N, and a McNaughton

function f over [0,1]m such that for each x ∈ [0,1]k

g(x) = f(xα(0), . . . , xα(m−1))

Remark 2.1.2. Since our main interest is the study of  Lukasiewicz infinite-valued calculus

with a denumerable set of propositional variables, we are going to study McNaughton

functions defined over the Hilbert cube [0,1]ω. If we consider a McNaughton function

f : [0,1]ω → [0,1], by definition 2.1.1, it depends on a finite number of variables. Let n be

the maximum index of these variables. We can consider the initial segment In = {1, . . . , n},

then the function f depends on a subset of the variables x0, . . . , xn. Therefore, we can say

that a map f : [0,1]ω → [0,1] is a McNaughton function over the Hilbert cube [0,1]ω if and

only if there is n ∈ {1, 2 . . . } and a McNaughton function r defined in [0,1]n such that

f(x) = r(x0, . . . , xn−1) ∀x ∈ [0,1]ω

The set of McNaughton functions over [0,1]k, with the following pointwise operations

¬f(x) = 1− f(x) ∀x ∈ [0,1]k

(f ⊕ g)(x) = min(1, f(x) + g(x)) ∀x ∈ [0,1]k

forms an MV -algebra. For each cardinal k, we denote with Mk the MV -algebra of Mc-

Naughton functions defined over [0,1]k and with M the MV -algebra of McNaughton func-

tions defined over [0,1]ω.

The next proposition links McNaughton functions with the free MV -algebras introduced

in the previous chapter.

Proposition 2.1.3. For each cardinal k, if a function f belongs to a free MV -algebra

Freek then f belongs to Mk.

Proof. The projections and the function 0 which takes the value 0 over [0,1]k are Mc-

Naughton functions. If f and g are McNaughton function with linear constituents ρ1, . . . , ρm
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2 – MV -algebras of McNaughton functions

and τ1, . . . , τn then f ⊕ g is given by the linear polynomials ρi + τj , for all i = 1, . . . ,m and

j = 1, . . . , n, together with the constant function 1. Then, McNaughton functions form

a subalgebra of [0,1][0,1]k . By lemma 1.4.3, all term functions are McNaughton functions.

The conclusion follows from proposition 1.4.6.

As we shall see, McNaughton’s theorem gives us a characterization of elements of free

MV -algebras, stating the converse of the previous proposition. The following result is

simpler and it does not have the full strength of McNaughton’s theorem, however it is

useful for most applications. First of all, for each real-valued function f , we define

f∧ =def (f ∨ 0) ∧ 1

Lemma 2.1.4. Let g : [0,1]n → R be a linear function with integer coefficient:

g(x) = m0x0 + · · ·+mn−1xn−1 +mnxn + b

with m0, . . . ,mn, b ∈ Z. Then g∧ ∈ Freen

Proof. Let m = |m0| + |m1| + · · · + |mn−1| + |mn|. The proof is by induction on m. If

m = 0 then g∧ coincides with the function 0 or the function 1. Whence it belongs to

Freen. Suppose that the lemma holds for m − 1. Without loss of generality, assume

|m0| = max(|m0|, . . . , |mn|). If m0 > 0, let h = g − x0. Then we have

h = h(x0, . . . , xn) = b+ (m0 − 1)x0 + · · ·+mnxn

By induction hypothesis both h∧ and (h + 1)∧ belong to Freen. We shall prove that for

each x = (x0, . . . , xn−1)

(h+ x0)∧ = (h∧ ⊕ x0)� (h+ 1)

It is clear that the identity holds whenever x is such that h(x) > 1 or h(x) < −1. If

x is such that h(x) ∈ [0,1], then h∧(x) = h(x) and (h(x) + 1)∧ = 1. Since x0 ∈ [0,1],

(h(x) + x0)∧ = h(x) ⊕ x0, then the equation holds. If h(x) ∈ [−1,0] then h∧(x) = 0 and
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2 – MV -algebras of McNaughton functions

(h(x) + 1)∧ = h(x) + 1, the equation results from the identities

(h(x) + x0)∧ = max(0, h(x) + x0)

= max(0, x0 + h(x) + 1− 1)

= x0 � (h(x) + 1)

Thus the identity holds for each x = (x0, . . . , xn−1). By induction hypothesis and proposi-

tion 1.4.6, we have

(h+ x0)∧ = g∧ ∈ Freen

If m0 < 0 it is sufficient to apply the same argument to the function 1 − g and show

(1− g)∧ ∈ Freen. Since 1− (1− g)∧ = g∧, we have g∧ ∈ Freen.

Proposition 2.1.5. For any two distinct points x, y ∈ [0,1]ω there exists f ∈M such that

f(x) = 0 and f(y) > 0.

Proof. Let x = (x0, x1, . . . ) and y = (y0, y1, . . . ) be two distinct points of [0,1]ω. Without

loss of generality, suppose x0 < y0. Let r be a rational number such that x0 < r < y0

and let p(z) = az + b be a linear polynomial with integer coefficients such that a > 0 and

r = −b/a. By proposition 1.4.6 and lemma 2.1.4 it follows that the function f(z) = p∧(z)

belongs to M , moreover, f(x) = 0 and f(y) > 0.

Theorem 2.1.6 (McNaughton’s theorem). For each cardinal k, the free MV -algebra Freek

is isomorphic to the set of McNaughton functions Mk.

Proof. See [3] for details.

Remark 2.1.7. The free generating set of Mk is given by canonical projections. In M , we

denote with {pi | i = 0, 1 . . . } the set of canonical projections where pi : [0,1]ω → [0,1] is

given by

pi(x) = xi ∀x ∈ [0,1]ω

35



2 – MV -algebras of McNaughton functions

2.1.1 Simplexes, triangulations and indexes

In order to show some useful properties concerning McNaughton functions defined over

[0,1]ω and to give a geometrical investigation of prime ideals of finitely generated MV -

algebras, in this section we will give some results which link McNaughton functions with

the theory of convex polytopes.

We know that a d-dimensional simplex is a d-dimensional polytope with the least number

of vertices. A point is a 0-dimensional simplex, a 1-dimensional simplex is a segment,

a 2-dimensional simplex is a triangle and a 3-segment is a tetrahedron. Generally, a d-

dimensional simplex has d+ 1 vertices. More formally, suppose that u0, . . . , uk are affinely

independent points of Rk, i.e. u1−u0, . . . , uk−u0 are linearly independent, then the simplex

of vertices u0, . . . , uk is given by the set

{λ0u0 + · · ·+ λkuk |
k∑
i=1

λi = 1 and λi ≥ 0 ∀i}

Since our main interest is the study of McNaughton functions, we will consider simplexes

which are contained in the cube [0,1]n, with n ∈ N. For each n-dimensional simplex

T ⊆ [0,1]n we have:

(i) a list of vertices v0, v1, . . . , vn;

(ii) di ≥ 1, the least common denominator of the coordinates of vi, for each i =

0, . . . , n;

(iii) a family of uniquely determined integers vij such that

vi = (vi0/di, . . . , vi(n−1)/di)

0 ≤ vij ≤ di (j = 0, . . . , n− 1)

with gcd(vi0, . . . , vi(n−1)) = 1.

(iv) vhomi ∈ Zn+1, the homogeneous coordinates of the vertices of T

vhomi = (vi0, . . . , vi(n−1), di), i = 0, 1, . . . , n

(v) the (n+ 1)× (n+ 1) matrix MT whose ith row coincides with vhomi .
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2 – MV -algebras of McNaughton functions

Definition 2.1.8. A triangulation T of [0,1]n is a set of n-dimensional simplexes such that

the union of all simplexes in T coincides with [0,1]n and any two simplexes in T are either

disjoint or intersect in a common face.

Definition 2.1.9. A simplex T is said to be unimodular if and only if det(MT ) = 1. A

triangulation T of [0,1]n is said unimodular if and only if it is constituted by n-dimensional

unimodular simplexes with rational vertices.

Definition 2.1.10. Let T be a unimoldular triangulation and let H be a rational hyper-

plane of Rn, i.e. a set of points in Rn

H = {x ∈ Rn |
n∑
i=1

mixi = m0} (mj ∈ Z, for each j = 0, . . . , n)

where not all of m1, . . . ,mn are zero. We say that the triangulation T respects the rational

hyperplane H if each simplex of T is contained in H+ or in H−, where H+ and H− denote

the two half-spaces defined by H.

Definition 2.1.11. Given a unimodular triangulation T , a refinement of T is a unimodular

triangulation U such that each simplex of T is the union of simplexes of U .

Lemma 2.1.12. Let T be a unimodular triangulation and H be a rational hyperplane of

Rn, then there exists a refinement U of T which respects H. Moreover, any two unimodular

triangulations have a joint refinement that respects H.

Notation and terminology. Given a set T we denote with int(T ) the interior of T and

with relint(T ) the relative interior of T , namely the interior of T relative to the affine hull

of T which is the smallest affine set containg T . The relative interior is more useful when

we deal with low-dimensional sets placed in higher-dimensional spaces. Given a set T we

denote with conv(T ) the convex hull of T , i.e. the smallest convex set containing T . The

convex hull of a finite set T is given by all convex combinations of its elements.

Definition 2.1.13. For each n ∈ N and 0 ≤ t ≤ n, a (t + 1)-uple u = (u0, . . . , ut) of

vectors in Rn is called index if and only if u1, . . . , ut are linearly independent vectors and

for some ε1, . . . , εt ∈ R+ the simplex

T = conv{u0, u0 + ε1u1, u0 + ε1u1 + ε2u2, . . . , u0 + ε1u1 + · · ·+ εtut} (2.1)
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called u-simplex, is contained in [0,1]n.

Remark 2.1.14. Given and index u, for each j = 0, . . . , t, we denote with uj the j-uple

(u0, u1, . . . , uj). Since also uj is an index, uj-simplexes are well defined.

Proposition 2.1.15. Let u = (u0, . . . , ut) be an index. If T1 and T2 are u-simplexes, then

T1 ∩ T2 contains some u-simplex.

Proof. By induction on t. Without loss of generality, suppose that u0 = 0. It is easy to

prove the cases t = 0 and t = 1. Suppose t > 1 and consider the u-simplexes

T ′1 = conv{0, ε1u1, ε1u1 + ε2u2, . . . , ε1u1 + · · ·+ εt−1ut−1}

T ′2 = conv{0, λ1u1, λ1u1 + λ2u2, . . . , λ1u1 + · · ·+ λt−1ut−1}

T1 = conv{0, ε1u1, ε1u1 + ε2u2, . . . , ε1u1 + · · ·+ εtut}

T2 = conv{0, λ1u1, λ1u1 + λ2u2, . . . , λ1u1 + · · ·+ λtut}

By induction hypothesis T ′1 ∩ T ′2 contains some ut−1-simplex

T ′ = conv{0, α1u1, α1u1 + α2u2, . . . , α1u1 + · · ·+ αtut}

T1 and T2 are convex sets, therefore for each x ∈ relint(T ′1 ∩ T ′2) there are δ1, δ2 > 0 such

that x + δ1ut ∈ T1 and x + δ2ut ∈ T2, whence, calling δ = min{δ1, δ2}, x + δut ∈ T1 ∩ T2.

The point c = α1

2 u1 + α2

2 u2 + · · ·+ αt−1

2 ut−1 can be seen as a convex combination of vertices

of T ′, then c ∈ relint(T ′). Since relint(T ′) ∈ relint(T ′1 ∩ T ′2), there exists α such that

c+ αut ∈ T1 ∩ T2. Therefore,

T = conv{0, α1

2
u1,

α1

2
u1 +

α2

2
u2, . . . , c, c+ αut}

is an u-simplex such that T ⊆ T1 ∩ T2.

Theorem 2.1.16. Let f : [0,1]n → [0,1] be a McNaughton function with linear constituents

ρ1, . . . , ρk, there is a unimodular triangulation T of [0,1]n such that for each simplex T ∈ T ,

f coincides with some ρj over T .

Proof. See [3, 3.3.1., 9.1.2.] for details.
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The next lemma explains a standard tool to construct McNaughton functions starting

from a triangulation and a {0,1}-valued map.

Lemma 2.1.17. Let T be a unimodular triangulation and µ a {0,1}-valued map defined

over the vertices of simplexes in T . Let f : [0,1]n → [0,1] be the unique function that is

linear over each simplex of T and such that ∀x vertex of a simplex of T

f(x) = µ(x)

Then f ∈Mn.

Proof. See [3, 9.1.4] for details.

Proposition 2.1.18. Let f,g ∈ M then, for some n, there are McNaughton functions r

and s over [0,1]n such that f(z) = r(z0, . . . , zn−1) and g(z) = s(z0, . . . , zn−1) for all z ∈

[0,1]ω. For each x̄ = (x0, . . . , xn−1) ∈ [0,1]n there is a finite family Σ = {S1, . . . , Sh} of

n-dimensional simplexes in [0,1]n obeying these conditions:

(i) x̄ is a common vertex of each simplex

(ii) ∃0 < η <∈ R such that S1 ∪ S2 ∪ · · · ∪ Sh contains an open set W with x ∈W of

the form:

W =
{

(y0, . . . , yn−1) ∈ [0,1]n |
(
(y0 − x0)2 + · · ·+ (yn−1 − xn−1)2

)1/2
< η

}
(iii) ∀i = 1, . . . , h there are linear polynomials ρi and σi with integer coefficients such

that r = ρi and s = σi on Si

Proof. Let f, g ∈ M , then there are n, t ∈ N and r ∈ Mn and s ∈ Mt such that for each

z ∈ [0,1]ω

f(z) = r(z0, . . . , zq)

g(z) = s(z0, . . . , zt)

With a similar argument of remark 2.1.2, assuming that n = max{q, t}, we have that f(z) =

r(z0, . . . , zn) and g(z) = s(z0, . . . , zn), ∀z ∈ [0,1]ω. Whenever we consider a McNaughton
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function f defined over [0,1]n, we can find a unimodular triangulation T of [0,1]n such that

f is linear over each simplex of T (theorem 2.1.16). Therefore, let T1 and T2 be the two

triangulations associated to r and s respectively. By lemma 2.1.12, we can find a joint

refinement V of T1 and T2 such that both r and s are linear over each simplex of V. We can

obtain a new refinement T such that x̄ is a vertex of some simplex of T . In fact, since T

is a triangulation of [0,1]n, x̄ ∈ V for some simplex T ∈ V, then we can refine the simplex

T connecting each vertex of T with x̄. Call Σ the set of all simplexes of T which have a

vertex in x̄, since T is a triangulation Σ is a finite set and there exists 0 < η ∈ R such that

the open ball centered in x̄ of radius η is fully contained in the union of all simplexes of Σ.

Hence (i) and (iii) hold. Finally, (iii) easily follows from our assumptions on T .

Definition 2.1.19. Given two functions f, g ∈ M and x ∈ [0,1]ω, f and g have the same

germ at x if and only if f = g on some open set in [0,1]ω containing x.

The following proposition emphasizes the role of direction derivatives of McNaughton

functions.

Proposition 2.1.20. Let f ∈ M , x, y ∈ [0,1]ω, u = y − x then the one-side direction

derivative at x

f ′(x;u) = lim
λ→0

f(x+ λu)− f(x)

λ

exists and is finite. Moreover, two functions f and g in M have the same germ at x if and

only if f(x) = g(x) and f ′(x; y − x) = g′(x; y − x) ∀y ∈ [0,1]ω.

Proof. These two properties are an immediate consequence if proposition 2.1.18.

Proposition 2.1.21. Let f, g ∈ M , by proposition 2.1.18 for some n there are two

McNaughton function r and s defined over [0,1]n such that f(z) = r(z0, . . . , zn) and

g = s(z0, . . . , zn) ∀z ∈ [0,1]ω, then we have that the two functions f and g have the same

germ at x if and only if for each index u = (x̄, u1, . . . , un), with x̄ = (x0, x1, . . . , xn), the

two functions r and s coincide over some u-simplex.
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Proof. Suppose that f and g have the same germ at x. Therefore, there exists an open

set A of [0,1]n such that x̄ = (x0, x1, . . . , xn) ∈ A and the two functions r and s coincide

over A. Let u = (x̄, u1, . . . , un) be an index, then for some ε1, ε2, . . . , εt ∈ R, such that the

simplex T = conv{x̄, x̄+ ε1u1, . . . , x̄+ ε1u1 + · · ·+ εnun} is contained in [0,1]n. Therefore,

we can choose another family of coefficients ε′1, ε
′
2, . . . , ε

′
n in a way that the u-simplex

T ′ = conv{x̄, x̄+ ε′1u1, . . . , x̄+ ε′1u1 + · · ·+ ε′nun} is smaller than T and it is fully contained

in A. Whence, r and s coincide on the u-simplex T ′. Iterating this process for each index

of the form u = (x̄, u1, . . . , un), it follows that the two function r and s coincide over some

u-simplex for each index u = (x̄, u1, . . . , un).

Conversely, suppose that the two functions r and s coincide over some u-simplex for each

index u = (x̄, u1, . . . , un). Then we can consider the family Σ of u-simplexes with arbitrary

direction u1 and fixed u2, . . . , un. Denoting with U the union of all these u-simplexes, then

the two functions r and s coincide over U . Whence, r and s coincide over the open set

int(U). In order to prove that x̄ ∈ int(U), we can consider the open ball of center x̄ and

radius η > 0, denoted by Bx̄,η. If we consider y ∈ Bx̄,η then y = x̄ + h for some h ∈ Rn.

Therefore, there is an u-simplex T in Σ such that y ∈ T . Whence, f and g coincide over

an open set containing x.

2.2 Ideals of M

Definition 2.2.1. For every non empty closed set X ⊆ [0,1]ω it is possible to define two

ideals of M as follows:

JX = {f ∈M | f = 0 on X}

OX = {f ∈M | f = 0 on some open set in [0,1]ω containing X}

we write Jx and Ox instead of J{x} and O{x}, respectively. Given an ideal J of M , it is

possible to define the following subset of [0,1]ω

VJ = {x ∈ [0,1]ω | J ⊂ Jx} = ∩
{
f−1(0) | f ∈ J

}
Lemma 2.2.2. Let A be a subalgebra of the MV -algebra M then for each x ∈ A the ideal

Jx is maximal in A.
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Proof. First of all, suppose that A = M . Jx is a proper ideal of A because the constant

function 1 is not among its elements. If f ∈ A \ Jx then f(x) > 0 and we can find an

integer such that nf(x) ≤ 1. It follows that

¬nf = 1− (f ⊕ · · · ⊕ f)︸ ︷︷ ︸ ∈ Jx
Whence by proposition 1.1.19 Jx is maximal. To complete the proof it is sufficient to

observe that given an MV -algebra B the intersection of a subalgebra and a maximal ideal

of B is a maximal ideal in the subalgebra.

Proposition 2.2.3. The map

J → VJ

is an inclusion reversing map from the set of ideals of M into the family of closed subsets

of [0,1]ω. Moreover, VJ /= ∅ for each proper ideal J of M .

Proof. The continuity of each f ∈ M ensures that VJ is a closed subset of [0,1]ω, for each

ideal J of M . It is easy to check that the map is inclusion reversing. Let J be a proper

ideal of M . Suppose VJ = ∅ (absurdum hypothesis). The Hilbert cube [0,1]ω is a compact

Hausdorff space, then there are f1, . . . , fs ∈ J with s ≥ 1 such that the intersection of their

zerosets is empty. Let f = f1 ⊕ · · · ⊕ fs, then f ∈ J and the zeroset of f is empty. Since

f attains minimum value > 0, there exists an integer m ≥ 1 such that mf(x) > 1 for all

x ∈ [0,1]ω. Thus, f ⊕ · · · ⊕ f︸ ︷︷ ︸
m times

takes value 1 for all x ∈ [0,1]ω. Since f ∈ J , it follows that

1 ∈ J and J = M , a contradiction.

Theorem 2.2.4. (i) The map x → Jx is a one-one correspondence between the

Hilbert cube [0,1]ω and the set of maximal ideals of M .

(ii) For each closed set C ⊆ [0,1]ω, VJC = C

(iii) For each proper ideal J in [0,1]ω, JVJ is the intersection of all maximal ideals of

M containing J .

Proof. (i). By lemma 2.2.2 the map x → Jx is a one-one correspondence from [0,1]ω into

the set of all maximal ideals of M . In order to prove that the map is onto the set of all
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maximal ideal of M , let J be a maximal ideals of M . Since J is proper, by proposition 2.2.3,

VJ is a nonempty closed set of [0,1]ω. Since for each y ∈ VJ , Jy ⊇ J , then VJ is a singleton,

in particular VJ = {x}.

(ii). Trivially C ⊆ VJC . In order to prove the converse inclusion, consider x ∈ [0,1]ω \ C.

By proposition 2.1.5, for each y ∈ C there is fy ∈ M such that fy(y) = ay > 0 and

f(x) = 0. By continuity, there is an open neighborhood Uy such that fy(z) > by = ay/2,

for each y ∈ C and z ∈ Uy. By the compactness of [0,1]ω there is a finite family of functions

f1, . . . , ft ∈M such that, taking f = f1⊕· · ·⊕ft, f(x) = 0 and f(z) > min(b1, . . . , bt) > 0,

for each z ∈ C. Then, for some integer n ≥ 1, ¬nf ∈ JC and ¬nf(x) = 1, thus x /∈ VJC .

Lemma 2.2.5. OX and JX are respectively the smallest and the largest ideal J in M such

that VJ = X.

Proof. It is clear that OX ⊂ JX , so VJX ⊂ VOX and X ⊂ VJX , by the definition of JX .

Let J be an ideal in M such that VJ = X. Then J ⊂ JX . In fact, if we take an f ∈ J

by our hypothesis on J we have that f = 0 on X. We can also observe that J ⊃ OX . We

have only to prove that VOX ⊂ X. If x /∈ X then the open set W = [0,1]ω \X contains an

open set U with x ∈ U and W ⊃ Ū , where Ū is the closure of U. It is possible to define a

function f ∈ M such that f(x) = 0 and f(y) = 1 ∀y /∈ U , therefore, there is g ∈ M such

that g(x) = 1 and g(y) = 0 ∀y /∈ U . In particular, g = 0 on the set Ȳ = [0,1]ω \ Ū that is a

set containing X. Then, g ∈ OX and since g(x) = 1 we have that x /∈ VOX .

We can observe that in the [0,1]-valued case there may be many ideals J in M with VJ =

X, in contrast with the two-valued case. The following result gives us a characterization

for the uniqueness of J such that VJ = X.

Theorem 2.2.6. For each x = (x0, x1, . . . ) ∈ [0,1]ω the following are equivalent:

(i) There is only one ideal J in M with VJ = {x}

(ii) The set {1, x0, x1 . . . } is linearly independent in the vector space R over Q.

Proof. (i)→ (ii). Assume the negation of (ii) saying that

0 = a+ b0x0 + b1x1 + · · ·+ bnxn (2.2)

43



2 – MV -algebras of McNaughton functions

for some nonzero (n+2)-uple (a, b0, . . . , bn) ∈ Qn+2. Without loss of generality we can

suppose a, b0, . . . , bn ∈ Z. Consider the following function:

f(z) = a+ b0z0 + · · ·+ bnzn for all z ∈ [0,1]ω (2.3)

We can observe that f is not necessarily in M , therefore we can consider g = (f ∨−f)∧ 1.

Then g ∈ M and there is no open set in [0,1]ω containing x such that g = 0 in this open

set. For otherwise, by 2.1.20, we have g′(x; y − x) = 0 for all y ∈ [0,1]ω. In particular,

taking the direction derivative along the coordinate axis, we obtain from (2.3): b0 = b1 =

· · · = bn = 0. By (2.2) we have a = 0, thus we have a contradiction with our hypothesis on

(a, b0, b1, . . . , bn). Then we have that g ∈ Jx \ Ox and, by lemma 2.2.5, VJx = VOx = {x}.

Therefore (i) does not hold.

In order to prove (ii) ← (i), assume the negation of (i), thus by lemma 2.2.5 there is

g ∈ Jx \Ox. By Proposition 2.1.20 there is y ∈ [0,1]ω such that

g′(x; y − x) /= 0 (2.4)

and by Proposition 2.1.18 there is a McNaughton function s : [0,1]n → R with:

g(z) = s(z0, . . . , zn−1)for all z ∈ [0,1]ω (2.5)

and there is 0 < ε ∈ R such that for some integers a, b0, . . . , bn−1 such that

s(z0, . . . , zn) = a+ b0z0 + · · ·+ bn−1zn−1 (2.6)

for all points (z0, . . . , zn) in the segment joining x̄ = (x0, . . . , xn−1) and x̄ + εū where

ū = (x0 − y0, . . . , xn−1 − yn−1). Since g ∈ Jx from (2.5) and (2.6) we have:

0 = s(x̄) = a+ b0x0 + · · ·+ bnxn (2.7)

If a = b0 = · · · = bn = 0 by (2.6) we have s′(x̄; ū) = 0 and hence g′(x, y − x) = 0, thus

contradicting (2.4). Therefore, by (2.7) the set {1, x0, . . . , xn−1} is not linearly independent

in R as a Q-vectorspace, thus (ii) does not hold.

For every nonempty subset X of [0,1]k the map

ρ : f ∈Mk → f |X ∈Mk|X
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is a surjective homomorphism. Suppose X = VJ for some proper ideal J of A, then it

follows that Ker(ρ) = JVJ . By lemma 1.1.22 we have the following result.

Proposition 2.2.7. For each J ∈ I(Mk) the map

f/J → f |VJ

is an isomorphism from Mk/J onto Mk|VJ if and only if J is an intersection of maximal

ideal of Mk.

Theorem 2.2.8. Each proper principal ideal of Mk is an intersection of maximal ideals.

Proof. See [3, 3.4.9] for details.

Lemma 2.2.9. Given f, g ∈Mk, we have that

g ∈ 〈f〉 iff g−1(0) ⊃ f−1(0)

Proof. See [3, 3.4.8] for details.

Lemma 2.2.10. Let f, g ∈ M, x ∈ [0,1]ω and f(x) = g(x) = 0. If for every y ∈

[0,1]ω, f ′(x; y − x) = 0 implies g′(x; y − x) = 0 then for some m ∈ ω and open set

U containg x we have:

f ⊕ · · · ⊕ f︸ ︷︷ ︸
mtimes

≥ g

Proof. Consider n, r, s, Σ = {S1, S2 . . . Sh} as in the proposition 2.1.18.

Let x̄ = (x0, x1, . . . , xn−1) and ei
j be the jth extremal point of Si, for each i = 1, . . . , h and

j = 1, . . . , n + 1. Let ui
j = ei

j − x̄, since r(x̄) = s(x̄) = 0 then, by our hypotheses, there

exists ni such that

nir
′(x̄;ui

j) ≥ s(x̄;ui
j) for all j = 1, . . . , n+ 1

Again by proposition 2.1.18, on the simplex Si the function nir− s has nonnegative direc-

tional derivative at x̄ along each direction ui
0, . . . , ui

n+1. Whence by linearity, nir ≥ s on

Si. Letting m = max(n1, . . . , nh), we have mr ≥ s on the set
⋃
i Si, and hence, still by

Proposition 2.1.18, mr ≥ s on some open set in [0,1]ω containing x̄. By the basic properties
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of the Hilbert cube we have that mf ≥ g on some open set U ⊂ [0,1]ω containing x. Since

g ≤ 1 then we have

f ⊕ · · · ⊕ f︸ ︷︷ ︸
mtimes

= 1 ∧mf ≥ g on U

Definition 2.2.11. Given Y ⊆ [0,1]ω, denoting with Fr(Y ) the boundary of Y , the func-

tion

δ : Fr(Y )→ P([0,1]ω)

is a (principal) germination of Y if and only if δ assigns to each x ∈ Fr(Y ) a (principal)

proper filter δ(x) over the power set of [0,1]ω.

Definition 2.2.12. Given Y ⊂ [0,1]ω and a germination δ of Y . We define the set JY,δ as

follows:

f ∈ JY,δ iff f = 0 onY and, ∀x ∈ Fr(Y ), {y ∈ [0,1]ω | f ′(x; y − x) = 0} ∈ δ(x) (2.8)

Theorem 2.2.13. (i) Let X ⊂ [0,1]ω be a nonempty closed set and δ a germination

of X. Then JX,δ is a proper ideal in M and VJX,δ = X.

(ii) Let J be a proper ideal in L and VJ = X. Then J = JX,δ for some germination

δ of X.

Proof. (i) Denote JX,δ = J by proposition 2.1.20. It is easy to see that J is an ideal

in M . It is also clear that 1 /∈ J because X /= Ø. In other to prove that VJ ⊂ X, by

lemma 2.2.5 it is sufficient to prove OX ⊂ J . Consider f ∈ OX then f = 0 on X and

for each x ∈ X ⊃ Fr(X) we have f = 0 on some open set containing x. Therefore, by

proposition 2.1.20 the set {y ∈ [0,1]ω | f ′(x; y − x) = 0} coincides with [0,1]ω that is an

element of δ(x). Thus f ∈ J .

(ii) To avoid trivialities assume J /= {0}. In order to define a germination δ, for each

x ∈ Fr(X), we can consider the family of subsets δ(x) in [0,1]ω defined as follow:

Y ∈ δ(x) iff Y ⊃ {y ∈ [0,1]ω | f ′(x; y − x) = 0} for some f ∈ J (2.9)
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We can observe that 0 ∈ J , then [0,1]ω ∈ δ(x). Since f ′(x; y − x) = 0 for all f ∈ J , then x

is a common element of all Y ∈ δ(x), thus ∅ /∈ δ(x). It is easy to see that if Y1 ∈ δ(x) and

Y1 ⊂ Y2 ⊂ [0,1]ω then Y2 ∈ δ(x). If Y1, Y2 ∈ δ(x), then there are f1, f2 ∈ J such that {y ∈

[0,1]ω | fi(x; y−x) = 0} ⊂ Yi for i = 1,2. Letting g = f1⊕f2, then g ∈ L and g = f1 +f2 on

some open set containing x because f1(x) = f2(x) = 0 as x ∈ Fr(X) ⊂ VJ = X. It follows

that {y ∈ [0,1]ω | g′(x; y−x) = 0} ⊂ Y1∩Y2. Therefore δ(x) is a germination of X. Now we

shall show that J = JX,δ. By the eq. (2.9) and the definition of JX,δ it is clear that J ⊂ JX,δ.

In other to prove the other inclusion, consider g ∈ JX,δ . For each x ∈ Fr(X) there is a

function fx ∈ J such that {y ∈ [0,1]ω | g′(x; y − x) = 0} ⊃ {y ∈ [0,1]ω | fx′(x; y − x) = 0}.

Then by lemma 2.2.10 there is an open set Ux containing x and mx ∈ ω such that

g ≤ fx ⊕ · · · ⊕ fx︸ ︷︷ ︸
mx∈ω

= f̂x on Ux and f̂x ∈ J (2.10)

The family {Ux | x ∈ Fr(X)} is an open cover of the close set Fr(X). Then by compactness

there are x1, . . . , xk ∈ Fr(X) such that the set W = Ux1
∪ · · · ∪ Uxk still covers Fr(X).

Let f̂ = f̂x1 ⊕ · · · ⊕ f̂xk then from 2.10 we have f̂ ∈ J and f̂ ≥ g on W . Since g = 0 on X,

then

g ≤ f̂ on some open set U containing x (2.11)

Let b ∈ M defined by b = g ∨ f̂ , then by 2.11 b = f̂ on U whence f̂∗ · b = 0 on U . Since

U ⊃ X = VJ it follows that f̂∗ ·b ∈ J . Since f̂ ∈ J and f̂∗ ·b ∈ J we obtain b = f̂∗ ·b⊕f̂ ∈ J .

Finally, g ≤ b and, therefore, g ∈ J .

2.3 Simple and semisimple MV -algebras

Definition 2.3.1. An MV -algebra A is called simple iff it has exactly two ideals. In other

words, an MV -algebra A is simple if A is nontrivial and {0} is its only proper ideal.

Theorem 2.3.2. For every MV -algebra A the following conditions are equivalent:

(i) A is simple

(ii) A is nontrivial and for every nonzero element x ∈ A there is no integer n > 0

such that 1 = x⊕ · · · ⊕ x︸ ︷︷ ︸
n times
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(iii) A is isomorphic to a subalgebra of [0,1]

Proof. (i) ↔ (ii). Suppose that A is simple then the ideal {0} is maximal in A, then (ii)

follows from proposition 1.1.19. Conversely, (ii) states that {0} is a maximal ideal of A,

hence A is simple.

(iii)→ (ii). It is clear that (ii) is satisfied by all subalgebras of [0,1].

(ii)→ (iii). Assume A is simple. If A has cardinality k, then A is isomorphic to the quotient

Freek/J (by proposition 1.4.7). Since A is simple, the ideal J must be maximal in Freek

(proposition 1.1.25). Therefore, by theorem 2.2.4, there exists a uniquely determined point

x ∈ [0,1]k such that J = Jx. Therefore, J coincides with the intersection of all maximal

ideals of Freek containing J . Applying proposition 2.2.7, it follows that A is isomorphic

to the MV -algebra Freek|{x} = πx(Freek), where πx : Freek → [0,1] is the map given by

πx(f) = f(x). Whence A is isomorphic to a subalgebra of [0,1].

Let A be an MV -algebra, we denote with Rad(A) the radical of A, i.e. the intersection

of all maximal ideals of A.

Definition 2.3.3. An MV -algebra A is said to be semisimple iff A is nontrivial and

Rad(A) = {0}.

It is clear that every simple MV -algebra is semisimple. We can also observe that, in the

light of proposition 1.1.25, given an ideal J of an MV-algabra A the quotient A/J is simple

if and only if J is maximal. Therefore by theorem 2.3.2 the quotient A/J is isomorphic to a

subalgebra of [0,1] if and only if J is maximal. As an immediate consequence of Birkhoff’s

theorem we have the following result.

Proposition 2.3.4. An MV -algebra A is semisimple if and only if it is a subdirect product

of subalgebras of [0,1].

Remark 2.3.5. From theorem 2.3.2 it follows that an MV -algebra A is semisimple if and

only if A is a subdirect product of simple MV -algebras.

Corollary 2.3.6. Every free MV -algebra is semisimple.

Proof. It follows from proposition 1.4.6
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Lemma 2.3.7. Given an MV -algebra A and an ideal J of A, the quotient algebra A/J is

semisimple if and only if J is an intersection of maximal ideals of A.

Proof. Suppose that A/J is semisimple, if {Mi}i∈I denotes the family of all maximal ideals

of A/J and hJ denotes the natural projection, then

J = h−1
J ({0}) = h−1

J (
⋂
i∈I

Mi) =
⋂
i∈I

h−1
J (Mi)

By proposition 1.1.25, J is an intersection of maximal ideals of A. Conversely, suppose

that J is an intersection of maximal ideals of A, then J is the intersection of all maximal

ideals of containing J. Let {Mi}i∈I denote this family, again by proposition 1.1.25, the

set {hJ(Mi)}i∈I denotes the family of all maximal ideals of A/J and hJ(J) = Rad(A/J).

Whence A/J is semisimple.

Theorem 2.3.8. An MV -algebra A with k many generators is semisimple if and only if

for some nonempty closed set X ⊆ [0,1]k, A is isomorphic to the MV -algebra of restrictions

to X of all functions in Freek

Proof. Suppose that A is semisimple. By proposition 1.4.7, there exists and ideal J of

Freek such that A ∼= Freek/J . By proposition 2.2.7 and lemma 2.3.7, A is isomorphic to

the MV -algebra of restrictions to VJ of functions of Freek. The converse direction is a

consequence of proposition 2.3.4.

Following [4], we can give the following definition.

Definition 2.3.9. An MV -algebra A is strongly semisimple is all its principal quotients

are semisimple.

Remark 2.3.10. Given any MV -algebra A, since {0} is a principal ideal of A, every strongly

semisimple MV -algebra is semisimple.

The following results, known as Wójcicki’s theorem, follows from theorem 2.2.8 and

lemma 2.3.7.

Theorem 2.3.11. Given an MV -algebra A such that A ∼= Freek/J with J principal ideal

of Freek, then A is semisimple.
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2.4 Quotients of M

Theorem 2.4.1. Let J be a proper ideal in M , and X = VJ , then the following conditions

are equivalent:

(i) J is the set of functions vanishing on X, namely J = JX

(ii) M/J is the MV -algebra of restrictions to X of functions in M

(iii) J = JX,δ• where δ• is the map that assigns to each x ∈ Fr(X) the principal

ultrafilter δ•(x) = {Y ⊃ [0,1]ω | x ∈ Y }

(iv) J is the intersection of all maximal ideals in M containing J

(v) M/J is isomorphic to a subalgebra of a direct product of simple MV -algebras

Proof. (i)→ (ii). Consider f/J, g/J ∈ L/J , then:

f/J = g/J iff ¬f � g ⊕ f � ¬g ∈ J

iff ¬f � g ⊕ f � ¬g = 0 on X

iff ¬f � g = 0 and f � ¬g = 0 on X

iff f = g on X

Then the map i : f/J → f
∣∣
X

induces a bijection ofM/J onto theMV -algebra of restrictions

to X of the functions in M . The map is also an isomorshism.

(ii)↔ (v). It follows from theorem 2.3.8.

(i)↔ (iii). In order to show that J = JX = JX,δ• , we can observe that

f ∈ JX,δ• iff f = 0 on X and, for all x ∈ Fr(X), {y ∈ [0,1]ω | f ′(x; y − x) = 0} ∈ δ•(x)

iff f = 0 on X and f ′(x; 0) = 0

iff f = 0 on X

iff f ∈ JX

(iv)↔ (v). By lemma 2.3.7.

(iv)→ (i). Suppose that J is the intersection of all maximal ideals of M containing J, i.e.

J =
⋂

I∈M(M)

I such that I ⊃ J
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By theorem 2.2.4, for each I ∈ M(M) there exists y ∈ [0,1]ω such that I = Jy. It is clear

that JX ⊂ Jx for all x ∈ X. If f ∈ J then f(x) = 0 for all x ∈ X = VJ , hence f ∈ JX .

Conversely, if f ∈ JX , then f ∈ Jx ∀x ∈ X = VJ . Therefore,

f ∈
⋂
x∈X

Jx ⊆
⋂
Jx⊆J

Jx = J

hence f ∈ J .

Theorem 2.4.2. A proper ideal J of M has the equivalent properties shown in theo-

rem 2.4.1 if J satisfies at least one of the following conditions:

(i) J is maximal;

(ii) J is finitely generated;

(iii) J is generated by McNaughton functions corresponding to the negations of the

axioms for MVn algebras with n ≥ 2;

(iv) for each x ∈ Fr(VJ) the set {1, x0, x1 . . . } is linearly independent in the vector

space R over Q;

Proof. (i). If J is maximal then it is clear that it satisfies (iv) of theorem 2.4.1.

(ii). Assume J is generated by one element f ∈ M and denote the zeroset of f with

X = f−1(0). Our purpose is to prove that J = JX . It is easy to check that J ⊂ JX .

Assume g ∈ JX and let x ∈ Fr(X). Let y ∈ [0,1]ω be such that g′(x; y − x) /= 0. Let

u = (y−x). Then for all sufficiently small ε ≥ 0 the point xε = x+ εu is not in X, because

g = 0 at x ∈ X and g is linear on the segment [x, xε] by proposition 2.1.18. From xε /∈ X,

f(xε) /= 0 we have that f ′(x; y−x) /= 0, again by proposition 2.1.18. Then by lemma 2.2.10

there is mx ∈ ω and an open set Ux containing x such that f ⊕ . . . f⊕︸ ︷︷ ︸
mx times

≥ g on Ux. As the

final part of theorem 2.2.13 in (ii) and recalling J is generated by f , we finally get g ∈ J .

(iii). By [6] together with theorem 2.4.1.

(iv). Let X = VJ . Then by lemma 2.2.5 it is sufficient to prove OX = JX , for then J = JX .

Assume f ∈ JX \ OX (absurdum hypothesis), let Z = f−1(0) and let int(Z) denote the

interior of Z. From f ∈ JX we get Z ⊃ X; from f /∈ OX we get X /⊂ int(Z). Then there is
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x ∈ X \ int(Z) and x ∈ X \ int(X). Whence x ∈ Fr(X), as X is closed. Since x /∈ int(Z)

then f /∈ Ox. Thus f ∈ Jx \ Ox. By theorem 2.2.6 the set {1, x0, x1, . . . } is not linearly

independent in R seen as a Q-vector space. This contradicts our assumption.

2.5 Prime ideals of Mn

Proposition 2.5.1. Given an index u = (u0, . . . , ut), with 0 ≤ t ≤ n, the subset Ju of

Freen, defined as follows

f ∈ Ju iff f−1(0) contains some u-simplex

is an ideal of Mn.

Proof. In order to prove that Ju is closed under minorants, suppose that f ∈ Ju and

consider g ∈Mn such that g ≤ f . Trivially, f−1(0) ⊆ g−1(0), whence g−1(0) contains some

u-simplex, hence g ∈ Ju. If f, g ∈ Ju then by definition there are two u-simplexes T1 and

T2 such that

f−1(0) ⊇ T1 and g−1(0) ⊇ T2

By proposition 2.1.15 it follows that there exists a u-simplex T which is contained in

T1 ∩ T2. Let us consider the zeroset of f ⊕ g then (f ⊕ g)−1(0) ⊇ f−1(0) ∩ g−1(0), hence

f ⊕ g ∈ Ju.

Our next aim is to show that Ju is a prime ideal of Mn. Moreover, we shall see that

every prime ideal J of Mn has the form J = Ju for some index u.

Definition 2.5.2. Given a unimodular triangulation T of [0,1]n and an index u = (u0, . . . , ut),

with 0 ≤ t ≤ n, we define the set

T u =
⋂
{F | F is a simplex of T and F contains some u-simplex}

which is still a simplex of T containing some u-simplex (by proposition 2.1.15). Recalling

the notation uj , it follows that Tu
j

is well defined for each j = 0, . . . , t.

Remark 2.5.3. From now on, all triangulations we are going to consider will be unimodular.
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Proposition 2.5.4. For any index u = (u0, . . . , ut), with 0 ≤ t ≤ n, the ideal Ju is a

prime ideal of Mn.

Proof. In order to see that Ju is prime, suppose that f /∈ Ju and g /∈ Ju. Applying

theorem 2.1.16 together with lemma 2.1.12, there exists a unimodular triangulation T

such that f, g, f ∧ g are linear over each simplex of T . If f vanishes over T u (absurdum

hypothesis), then f vanishes over some u-simplex T ⊆ T u. Whence f ∈ Ju, a contradiction.

It follows that f(x) > 0 for some x ∈ T u. Similarly, g(y) > 0 for some y ∈ T u. From the

assumption about T it follows that f and g are positive over relint(T u) and f ∧ g is linear

over T u. Therefore, we have that f ≤ g or g ≤ f over T u, in either case f ∧ g /= 0. Thus,

Ju is prime.

Definition 2.5.5. Given an index u = (u0, . . . , ut), we define the set

ζ(u0) =
⋂
{H | u0 ∈ H} (2.12)

and for each i = 1, . . . , t

ζ(uj) =
⋂
{H | conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · εjuj} ⊆ H} (2.13)

or equivalently,

ζ(uj) =
⋂
{H | T ⊆ H for some uj-simplex T} (2.14)

A translation of −u0 of ζ(uj) (for each 0 ≤ i ≤ t) yields its associated linear space

λ(uj) = ζ(uj)− u0 = {x ∈ Rn | (x+ u0) ∈ ζ(uj)} (2.15)

Notation. We shall write ζ(u) instead of ζ(ut) and λ(u) instead of λ(ut).

Remark 2.5.6. Given a triangulation T and an index u = (u0, . . . , ut), by definition 2.5.2

and definition 2.5.5 it follows that

dim T u
j

≥ dim ζ(uj) for all j ≤ t

indeed, by unimodularity of T , each simplex W ∈ T of codimension 1 is contained in a

rational hyperplane.
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Definition 2.5.7. A triangulation T is said u-good if

dim T u
j

= dim ζ(uj) for all j ≤ t

Given a function f ∈Mn, a triangulation T is said f -good if f is linear over each simplex

of T . A triangulation T which is u-good and f -good is said uf -good.

Lemma 2.5.8. Let u = (u0, . . . , ut) be an index, then:

(i) For every triangulation T , T uj is a face of T uj+1 , in symbols

T uj 4 T uj+1

(ii) Every triangulation T can be refined to a u-good triangulation.

(iii) If W is a refinement of a u-good triangulation T , then Wu ⊆ T u and T u is the

smallest simplex of T containing Wu.

(iv) Every refinement of a u-good triangulation (resp., uf -good) is u-good (resp., uf -

good).

(v) The following identity holds

Ju = {f ∈Mn | f |T u = 0, for some uf -good triangulation T } (2.16)

(vi) If f ∈ Ju then f |Uu = 0, for every uf -good triangulation U .

Proof. (i). It is a direct consequence of definition 2.5.2.

(ii). It follows by lemma 2.1.12.

(iii). Suppose that T is the smallest simplex of T containingWu and suppose that T u /= T

(absurdum hypothesis). Since both T u and T are simplexes of T containing some u-

simplex, by proposition 2.1.15, T u ∩ T is a simplex of T containing some u-simplex. By

minimality of T u, T strictly contains T u and, by minimality of T , T u does not containWu.

Let S = T u∩Wu, again by proposition 2.1.15, S contains some u-simplex R. Furthermore,

since W refines T , S is simplex of W and ∅ /= S ⊂ Wu. This is in contradiction with the

minimality of Wu. Then, T = T u and Wu ⊆ T u.
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(iv). Let U be a refinement of a u-good triangulation T . We know that dimU j ≥ dim ζ(uj),

for each j = 0, . . . , t. From (iii) it follows that U j ⊆ T j , whence dimU j ≤ dim T j =

dim ζ(u). Hence U is u-good.

(v). Consider f ∈ {g ∈Mn | g|T u = 0}. Then, the zeroset f−1(0) contains some u-simplex,

whence f ∈ Ju. Conversely, suppose that f ∈ Ju. Then there is a unimodular triangulation

T such that f is linear over each simplex of T (by theorem 2.1.16) and f vanishes over

a u-simplex R which is contained in some simplex of T . By (ii), T can be refined to a

u-good triangulation. Let U be the u-good refinement of T , then R is contained in a union

of simplexes of U and each of these simplexes contains a u-simplex. Then Uu ⊆ R, hence

f |Uu = 0.

(vi). By (v) there exists at least one uf -good triangulation T such that f |T u = 0. Let U be

an arbitrary uf -good triangulation. Then, by lemma 2.1.12 there exists a joint refinement

V of T and U . Then by (iii) and (iv), V u is subset of T u ∩ U having the same dimension

of Uu. Thus f |V u = 0. Since f is linear over Uu, f |Uu = 0.

Definition 2.5.9. Let u = (u0, . . . , ut) and v = (v0, . . . , vr) be indexes, with 0 ≤ t ≤ r ≤ n.

If ui = vi for each i = 0, . . . , t then v is called an extension of u. Moreover, if ζ(ut) ⊂ ζ(vr),

v is called a proper extension of u.

Lemma 2.5.10. If v is an extension of u, then Jv ⊆ Ju.

Proof. Let f ∈ Jv, then by lemma 2.5.8(vi) for any vf -good triangulation T , f vanishes

over T v. It is clear that T is also uf -good and T u ⊆ T ut ⊆ T v. Thus f vanishes over T u,

whence by lemma 2.5.8(v) f ∈ Ju.

We can observe that if we consider an index u = (u0, . . . , ut) such that n > t, it

may happen that t < dim ζ(u) ≤ n. For example, if u = u0 and u0 /∈ Q ∩ [0,1]n, then

dim ζ(u) > 0. In this case there is an element v ∈ λ(u) such that (u1, . . . , ut, v) is a proper

extension.

Definition 2.5.11. Given a triangulation T and a simplex F ∈ T , the star of F in T is

the smallest subcomplex of T containing all simplexes of T that contain F and it is denoted
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by

st(F ; T )

The point-set-theoretical union of st(F ; T ) is called closed star and it is denoted by

clstar(F ; T )

The interior of clstar(F : T ) relative to n-cube is called the open star of F in T and it is

denoted by

ostar(F ; T )

then, it follows that

ostar(F ; T ) = int{x ∈ [0,1]n | ∃n-dimensional T ∈ T such that x ∈ T ⊇ F}

Definition 2.5.12. Given a prime ideal J of Mn, the germinal ideal of J , denoted by

germ(J), is the intersection of all prime ideals contained in J , i.e.

germ(J) =
⋂
{I ⊆Mn | I is a prime ideal of Freen and I ⊆ J}

Theorem 2.5.13. Given an u = (u0, . . . , ut) and a function f ∈Mn, the following condi-

tions are equivalent:

(i) f |ostar(T u;T ) = 0 for some uf -good triangulation T ;

(ii) f |ostar(T u;T ) = 0 for all uf -good triangulations T ;

(iii) f ∈ germ(Ju).

Proof. (ii)→ (i). It is trivial, in fact at least one uf -good triangulation exists.

(iii) → (ii). Let T be a uf -good triangulation. By lemma 2.5.8, if f ∈ germ(Ju) ⊆ Ju

then f |T u = 0. We know that, by definition of T u, there exist real numbers ε1, . . . , εt > 0

such that

conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · ·+ εtut} ⊆ T u

Suppose f(x) > 0 for some x ∈ ostar(T u; T ) (absurdum hypothesis). Then there is a

vector v ∈ λ(u)⊥ such that, for all suitably small δ > 0, the function f is linear and non

constantly zero over the set

R = conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · ·+ εtut, u0 + ε1u1, . . . , εtut + δv}
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Then f > 0 over relint(R), if we denote with (u, v) the (t + 2)-uple (u0, . . . , ut, v), then

f /∈ J(u,v) otherwise f vanishes over some (u, v)-simplex Q which can be assumed to

be contained in R (by 2.1.15). From lemma 2.5.10 it follows that J(u,v) ⊆ Ju and by

proposition 2.5.4 J(u,v) is prime. Whence J(u,v) ⊆ germ(Ju), hence f /∈ germ(Ju), a

contradiction.

(i) → (iii). Suppose f |ostar(T u;T ) = 0 for some uf -good triangulation T . Since T u ⊆

ostar(T u; T ), f |T u = 0 and, by 2.5.8, f ∈ Ju. Let J be a prime ideal of Mn such that

J ⊆ Ju and suppose f /∈ J (absurdum hypothesis). LetW be a refinement of T obtained via

starring T at the mediant of T u: W has a new vertex b which is obtained by writing each

vertex (v1/v, . . . , vn, v) of T u in homogeneous coordinates as (v1, . . . , vn, v), then taking

the sum (s1, . . . , sn, s) of these vectors, and finally letting b = (s1/s, . . . , sn/s). The vertex

b ∈ [0,1]n ∩Qn is called the Farey mediant of the vertices of T u. The new refinement W is

automatically unimodular, u-good and b ∈ relint(T u). By lemma 2.1.17, we can consider

the function g ∈ Freen obtained by specifying its valued at vertices of W as follows:

g(x) =

{
1 if x = b

0 if x is any other vertex of W

Then, by lemma 2.5.8, g /∈ Ju, whence g /∈ J . By construction the function g vanish over

the complement of ostar(T u; T ) in [0,1]n. Then f ∧ g = 0 ∈ J , in contradiction with the

primeness of J .

Proposition 2.5.14. Given an index u = (u0, . . . , ut) such that dim ζ(u) < n and a prime

ideal J such that J ⊆ Ju, if there does not exists a proper extension v of u such that J ⊆ Jv

then there is a function f ∈ J and a uf -good triangulation T such that

(i) f |T u = 0

(ii) f(x) > 0 for all x ∈ clstar(T u; T ) \ T u

Proof. Let ζ⊥ denote the affine space given by u0-translation of λ(u)⊥. Suppose d is the

dimension of ζ⊥ then q = n− dim ζ(u). Let S be the (q − 1)-dimensional sphere of radius

one, centered in u0 and lying in ζ⊥, in symbols

S = {z ∈ ζ⊥ | d(z, u0) = 1}
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Given an arbitrary unit vector v ∈ λ(u)⊥, the index (u, v) is a proper extension of u. Since

there does not exist a proper extension v of u such that J ⊆ Jv, J /⊆ J(u,v). Then there

exists fv ∈ J \ J(u,v). Since J ⊆ Ju, fv ∈ Ju. Let Tv be a (uv)f -good triangulation.

Trivially Tv is uf -good, then

fv|T u
v

= 0 and fv(x) > 0 for all x ∈ relint(T (u,v)
v ) (2.17)

Denote with Ov the open star of T (u,v)
v in Tv, it follows that

fv(x) > 0 ∀x ∈ Ov (2.18)

One can observe that fv is linear over each n-simplex of the star of T (u,v)
v in Tv and is > 0

over relint(T (u,v)
v ) ⊆ Ov. We denote with O′v the projection of Ov into ζ⊥. The set O′v is

relatively open in ζ⊥ because is a projection of a open set. For each y ∈ O′v we denote with

ŷ the intersection of the sphere S with the half-line originating in u0 and passing through

y. Then the set

Ôv = {ŷ | y ∈ O′v}

is relatively open in the sphere S. If the unit vector v ranges over all unit vectors of λ(u)⊥,

we obtain a family

O = {Ôv | v ∈ λ⊥}

which is a open cover of S. Since S is compact, there is a finite subfamily

{Ôv(1), Ôv(2), . . . , Ôv(k)}

of O which is still a cover of S. For each v(i) we have a function fi = fv(i) ∈ J \J(u,v(i)) and

some (u, v(i))-good triangulation Ti = Tv(i) such that the conditions expressed in (2.17)

are satisfied.

Claim 1. For each non zero vector w ∈ λ⊥ there is i ∈ {1, . . . , k} such that the closed star

of T (u,v(i))
i in Ti contains some (u, w)-simplex

conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · ·+ εw}

whose vertex u0 + ε1u1 + · · ·+ εw lies in Ov(i).

Proof claim 1. Let x = u0 + w ∈ ζ⊥. As we have seen previously, x̂ denotes the in-

tersection of S with the half-line originating in u0 passing through x. Since the family
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{Ôv(1), Ôv(2), . . . , Ôv(k)} is an open cover of S, there exists a v(i) and y ∈ O′v(i) such that y

coincides with u0+δw, for some δ > 0. Then, there is a point z = u0+ε1u1+· · ·+εw ∈ Ov(i)

whose projection into ζ⊥ coincides with y. By definition of Ov(i) there is a n-simplex R in

the star of T (u,v(i))
i such that z ∈ R. Since R is convex and T u

i is a proper subface of R,

it follows that

conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · ·+ εtut + εw} ⊆ R ⊆ clstar(T (u,v(i))
i ; Ti)

Then the claim is settled.

Consider the function f ∈ J defined by

f = f1 ∨ f2 ∨ · · · ∨ fk (2.19)

where fi is the function associated to the vector v(i), for each i = 1, . . . , k. In the light

of lemma 2.1.12, there exists a jointly f -good refinement T of the family T1, . . . , Tk. By

(2.17) and lemma 2.5.8, fi|T u = 0, for each i = 1, . . . , k. Then, it follows that

f |T u = 0

Claim 2. f(x) > 0 for each x ∈ clstar(T u; T ) \ T u.

Proof claim 2. First of all, assume x ∈ ostar(T u; T ) \ T u. Then x ∈ relint(T ) for a

uniquely determined smallest simplex T ∈ T in the star of T u. It follows that T u is a

proper face of T , whence dimT > dim T u. The vector x − u0 con be uniquely written as

x − u0 = l + v where l ∈ λ(u) and v ∈ λ(u)⊥. Since x /∈ T u, we have v /= 0. Then,

the simplex T contains some (u, v)-simplex. Denoting with Ō the closure of the set O, by

Claim 1, the closed star Ōv(i) of T (u,v(i))
i in Ti contains some (u, v)-simplex. Then, by

proposition 2.1.15, the simplex T ∩ Ōv(i) contains some (u, v)-simplex

T ′ = conv{u0, u0 + ε1u1, . . . , u0 + ω1u1 + · · ·+ ωtut + ωv} ⊆ T ∩ Ōv(i)

Let c ∈ relint(T ′). Then c ∈ Ov(i) and from (2.18) it follows that fi(c) > 0. Since

f ≥ fi > 0 over Ov(i) it follows that f(c) > 0. Since c ∈ relint(T ) and T is f -good, f > 0

over relint(T ). Thus f(x) > 0 for all x ∈ relint(T ). Our claim is settled in the case when

x ∈ ostar(T u; T ) \ T u.
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Assume x ∈ clstar(T u; T ) \ T u. Then we can find a point y ∈ relint(T u) (for example y

can be chosen as the Farey mediant of the vertices of T u) such that the segment joining

x and y contains some point z ∈ ostar(T u; T ) \ T u. This segment is contained in some

simplex of the star of T u and f is linear over all simplexes in T . Since y ∈ relint(T u),

f(y) = 0 and, by previous discussion, f(z) > 0. Then f(x) > 0 and the claim is settled.

Theorem 2.5.15. Given and index u = (u0, . . . , ut) and a prime ideal J such that J ⊆ Ju,

if there exists no proper extension v of u such that J ⊆ Jv, then J = Ju.

Proof. Case 1. If dim ζ(u) = n, then there is no vector v ∈ Rn such that the index (u, v)

is a proper extension of u. Suppose that J ⊂ Ju (absurdum hypothesis), then there exists

f ∈ Ju \ J and by theorem 2.1.16 there exists a f -good triangulation V which can be

refined to a uf -good triangulation T by lemma 2.5.8(ii). Since the zeroset of f contains

some u-simplex, T u is given by the intersection of all simplexes of T which contain some

u-simplex an T is uf -good, dim T u = n and f |T u = 0. As we have done in theorem 2.5.13,

let W be the refinement of T obtained by starring T at the mediant b of T u. In the light

of lemma 2.1.17 let g ∈ Freen be the function determined by specifying its value at each

vertex of W as follows

g(x) =

{
1 if x = b

0 if x is any other vertex ofW

with g linear over each simplex ofW. Since f |T u = 0, we have g∧f = 0, whence g∧f ∈ J .

By construction g /∈ Ju. Since f /∈ J it follows that J is not prime, a contradiction.

Case 2. If dim ζ(u) < n, consider g arbitrary function in Ju. By proposition 2.5.14 there

exists a function f ∈ J and a uf -good triangulation T satisfying the conditions therein.

Our aim is to construct a function h ∈ J such that g is in the ideal generated by f⊕h which

is contained in the ideal J , thus showing that Ju = J . An application of lemma 2.1.12

yields a ufg-good triangulation V which refines T . Since g ∈ Ju, then g|uT = 0 because

T u is given by the intersection of all simplex in T which contain some u-simplex and g

vanishes over some u-simplex. By lemma 2.5.8, Vu ⊆ T u therefore g|Vu = 0. In the light
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of lemma 2.1.17 let h ∈ Freen the function

h(x) =

{
0 if x is a vertex of some simplex in the star of Vu

1 if x is any other vertex of V

with h linear over each simplex of V. Then h vanishes over ostar(Vu;V), whence by

theorem 2.5.13 h ∈ germ(Ju). Since by our hypothesis J is prime and J ⊆ Ju it follows

that h ∈ J . We can observe that proposition 2.5.14 continues to be satisfied by every

refinement of the triangulation T . In fact by lemma 2.5.8, Vu ⊆ T u, then f vanishes over

Vu. Thus the condition (i) is easily satisfied by V. First of all, in order to prove that V

satisfied also the second condition, we can observe that if Vu = T u the conclusion follows

trivially. If Vu ⊂ T u it follows that T u can not be a simplex of V because Vu and T u have

the same dimension (since both of them are u-good) and V is unimodular. Therefore, T u

is divided by the operation of refinement which yields V and each part is a simplex of the

refinement V. One of these part is the simplex Vu and the other parts of T u are not in

the closed star of Vu in V. Whence the only points of the clstar(Vu;V) where f vanish

are those of Vu. Hence the condition (ii) of proposition 2.5.14 is satisfied by V. Therefore,

(f ⊕ h)(x) = 0 if and only if x ∈ Vu. Since g|Vu = 0, the zeroset of f ⊕ g is contained in

the zeroset of g, therefore by lemma 2.2.9 g ∈ 〈f ⊕ h〉 ⊆ J . Hence Ju = J .

Corollary 2.5.16. Every prime ideal J of Mn has the form J = Ju for some index u.

Proof. Every prime ideal of Mn is contained in exactly one maximal ideal. As we have seen

in theorem 2.2.4, all maximal ideal of Mn are exactly those of the form Jx = {f ∈ Mn |

f(x) = 0}, for some x ∈ [0,1]n. In other words, if we consider an index u = (u0, u1, . . . , ut),

Ju0
is a maximal ideal, (u0, u1) is an index and it is an extension of the index u0, therefore

by lemma 2.5.10 J(u0,u1) ⊆ Ju0 . Therefore, iterating this process, we obtain a chain of

prime ideals

Ju0
⊇ J(u0,u1) ⊇ J(u0,u1,u2) ⊇ · · · ⊇ J(u0,u1,...,ut) (2.20)

Suppose that u is an index such that Ju ⊇ J and there does not exits a proper extension

v of u such that Jv ⊇ J . Then, by theorem 2.5.15, J = Ju.
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Chapter 3

Strong completeness in
 Lukasiewicz propositional logic
 L∞

In this chapter we shall tackle the problem of completeness in  Lukasiewicz propositional

logic. As we shall see for the tautologies, the completeness theorem is satisfied, in other

words the set of semantic tautologies coincides with the set of syntactic tautologies. The

situation is very different if we consider the deductive closure of a set of formulas Θ. In

fact, in general, the set of semantic consequences does not coincide with the set of syntactic

consequences. We shall show an example of a formula which is a semantic consequence

of a family of formulas Θ but it is not a syntactic consequence. This example highlights

the inadequacy of the Bolzano-Tarski paradigm, i.e. the usual definition of valuation.

Subsequently we shall establish those cases in which the completeness is satisfied. In

order to do this, following [9], we shall associate the two sets of semantic and syntactic

consequences with two filters in the free MV -algebra and we shall see what conditions

must be satisfied for these two filters to coincide. In the last part of the chapter we shall

define a new concept of valuation giving a new notion of satisfiability in which the prime

ideals will come into play. As done in [10], we shall call these new valuations differential

valuations as they take into account the differential properties of McNaughton functions.
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3.1 Semantic consequence relation in  L∞

By McNaughton’s theorem 2.1.6 and proposition 1.6.1, for every formula p, the equivalence

class [p] can be identified with a function fp : [0,1]ω → [0,1] in the MV -algebra of Mc-

Naughton’s functions. We denote with V AL the set of valuations of formulas in FORM .

It can be identified with the Hilbert cube [0,1]ω via the restriction map

v ∈ V AL : → V = v|{X0,X1,... }
∈ [0,1]{X0,X1,... } = [0,1]ω

Then for each p ∈ FORM we have v(p) = fp(V ), where V is now realized as the element

(V0, V1, . . . ) ∈ [0,1]ω such that Vn = V (Xn). From these observations we can reformulate

the definition of semantic consequence as follows.

Definition 3.1.1. In  L∞, given a set Θ ⊆ FORM it is possible to define the relation |=

of semantic consequence, for all p ∈ FORM , by stipulating that:

Θ |= p iff ∀V ∈ [0,1]ω, (fq(V ) = 1 for all q ∈ Θ =⇒ fp(V ) = 1)

On the other hand, the set of syntactic consequences of Θ, denoted with Θ`, is the

smallest subset of FORM closed under modus ponens, containing Θ and tautologies.

Remark 3.1.2. What has been observed previously can be reported to the case in which the

set of formulas is constructed from a finite set of n ≥ 1 variables. In this case we denote

with V ALn the set of all valuations of formulas in FORMn and it can be identified with

the unit cube [0,1]n as we have seen previously.

Lemma 3.1.3. Each formula provable from a set Θ ⊆ FORM of formulas is also a

semantic consequence of this set. In other words, the following inclusion holds

Θ` ⊆ Θ|= (3.1)

In particular, all provable formulas are tautologies.

Proof. Let v ∈ V AL be a valuation such that v(α) = 1 for all α ∈ Θ. By induction on n we

shall prove that if α1, α2, . . . , αn is a proof from Θ then v(αn) = 1. If n = 1 then α1 is an

axiom or it belongs to Θ. In the first case, observing that all axioms are tautologies, we have
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v(α1) = 1. In the second case by the hypothesis on v we have v(α1) = 1. Assume n > 1 and

suppose that, for each proof from Θ, β1, . . . , βm, with m < n, v(βm) = 1. Let α1, . . . , αn

be a proof from Θ. If αn is not an axioms and αn /∈ Θ then there are i, j ∈ {1, . . . , n} such

that αj is the formula (αi → αn). Since both α1, . . . , αi and α1, . . . , αj are proofs from

Θ, by induction hypothesis we have v(αi) = v(αj) = 1. Therefore

1 = v(αj) = 1→ v(αn) = v(αn)

The converse inclusion is verified for the set of tautologies and it follows from Chang’s

completeness theorem. Recalling the definition of the syntactic equivalence ≡ and Linden-

baum algebra L, we can prove the following result which states that the set of semantic

tautologies ∅|= coincides with the set of syntactic tautologies ∅`.

Theorem 3.1.4. Every tautology is provable, in symbols

∅|= = ∅` (3.2)

Proof. For each propositional variable Xi, the class [Xi] is an element of the Lindebaum

algebra L. Let α ∈ FORM with V ar(α) ⊆ {Xi1 , . . . , Xin}. Then by induction on the

number of connectives in α we have

αL([Xi1 ], . . . , [Xin ]) = [α] (3.3)

Thus, if α ∈ FORM is not provable, then [α] /= 1, whence αL([Xi1 ], . . . , [Xin ]) /= 1. In

other words, the Lindenbaum algebra L does not satisfy the equation α = 1. Then, by

Chang’s completeness theorem 1.3.5, the MV -algebra [0,1] does not satisfy the equation

α = 1, i.e. α is not a tautology.

Differently by the classical logic, the traditional semantic relation |= in  L∞ fails to be

strongly complete. In lemma 3.1.3 we have proved the inclusion Θ` ⊆ Θ|= but, as we shall

see, in general, Θ|= /= Θ`. The differential properties of fp, for all p ∈ Θ are ignored by the

semantic consequence relation |= that we have already defined, although they have no less

semantical content than the truth-value fp(V ). The following example involves formulas in

one variable and it shows as the Bolzano-Tarski paradigm does not work in  L∞.
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Example 3.1.5. Suppose Θ ⊆ FORM1 and suppose Θ is satisfied by a unique valuation

V ∈ [0,1] with V < 1 and V ∈ Q. Suppose that ∂fp/∂X
+(V )=0 for all p ∈ Θ. Let

q = q(X) be a formula with fq(V ) = 1 and fq(W ) < 1 for all W > V . Intuitively the

hypothesis means that each p ∈ Θ is also true for all W > V sufficiently close to V. In

other words, p is ’stably’ true at V . Instead q misses this stability property, although q is

a semantic consequence of Θ. It should be noted that Θ /̀ q, in fact if we suppose Θ ` p

(absurdum hypothesis) then, by compactness, there is a finite subset {θ1, θ2, . . . , θk} ⊆ θ

such that {θ1, θ2, . . . , θk} ` p. By our hypothesis on Θ, each θi is stably true at V , but p

is only true at V , then {θ1, . . . , θk} /|= p, in contradiction with lemma 3.1.3. Thus Θ /̀ p.

Now our aim is to give a necessary and sufficient conditions for Θ` coincides with Θ|=.

Definition 3.1.6. Each set Θ ⊆ FORM determines a filter FΘ and an ideal IΘ in the

MV -algebra of McNaughton’s function M , defined as follows

1. FΘ = 〈{fp | p ∈ Θ}〉

2. IΘ is the ideal of M generated by the set {1− fp | p ∈ Θ}

which correspond, via the isomorphism between M and L, to the filter F (Θ) generated by

[Θ] and the ideal I(Θ) = F (Θ)∗ defined in definition 1.6.7.

Proposition 3.1.7. (i) Let ∅ /= Θ ⊂ FORM . Then Θ` = Θ̂

(ii) For each p ∈ FORM we have p ∈ Θ` iff fp ∈ FΘ iff fp ∈ FΘ̂ iff fp
∗ ∈ IΘ

Proof. (i). It is easy to check that Θ̂ is a theory containing Θ. Conversely, let consider

p ∈ Θ̂, then q1 → (q2 → · · · (qn → p) is a tautology with q1, . . . , qn ∈ Θ. Then by an

induction argument it follows that p ∈ Θ`. By proposition 1.6.3 (i) Θ̂ = Θ`. (ii). It follows

from (i) and proposition 1.6.8.

Therefore, by proposition 3.1.7 FΘ is the set of McNaughton’s functions corresponding

to the syntactic consequences of Θ. If Θ = ∅, then Θ` is the set of tautologies and the

proposition 3.1.7 can be extended to this case by defining Θ̂ as the set of all tautologies,

FΘ = {1}, as done in proposition 1.6.8.
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Now consider the set of semantic consequences Θ|=, we shall associate to this set another

filter in the MV -algebra of McNaughton’s functions M . Previously it is necessary to give

the following definitions.

Definition 3.1.8. Given a set Θ ⊆ FORM with Θ /= ∅, we can define the close set of

[0,1]ω

XΘ = VIΘ = {x ∈ [0,1]ω | f(x) = 0 for all f ∈ IΘ}

Then, by the definition of IΘ and FΘ and by proposition 3.1.7

XΘ = {x ∈ [0,1]ω | fq(x) = 1 for all q ∈ Θ} (3.4)

We can define the ideal IΘ and the filter FΘ as follows:

IΘ = {f ∈ L | f = 0 on XΘ} = JXΘ
(3.5)

FΘ = {f ∈ L | f = 1 on XΘ} = (IΘ)∗ (3.6)

In case Θ = ∅, XΘ = [0,1]ω, IΘ = {0} and FΘ = {1}.

Proposition 3.1.9. Let Θ ⊆ FORM . Then for all p ∈ FORM

p ∈ Θ|= iff fp ∈ FΘ (3.7)

Proof.

p ∈ Θ|= iff for all V ∈ [0,1]ω, if fq(V ) = 1 for every q ∈ Θ then fp(V ) = 1

iff fp = 1 on XΘ

iff fp ∈ FΘ

Therefore the filter FΘ is the filter given by all McNaughton functions corresponding to

semantic consequences of Θ.

The following theorem gives a necessary and sufficient condition for Θ` coincides with Θ|=.

Theorem 3.1.10. For every Θ ⊆ FORM the following are equivalent:
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(i) The two sets of semantic consequences Θ|= and syntactic consequences Θ` coin-

cide.

(ii) The ideal IΘ satisfies the equivalent conditions of theorem 2.4.1 or IΘ = M .

Proof.

Θ` = Θ|= iff IΘ = IΘ by proposition 3.1.7 and proposition 3.1.9

iff IΘ = JXΘ

iff IΘ = JVIΘ

Now apply theorem 2.4.1(i)

Therefore, recalling the definition of Lindenbaum algebra of Θ, the following corollary

is a direct consequence of theorem 3.1.10.

Corollary 3.1.11. The set of semantic consequences Θ|= coincides with the set of syntactic

consequences Θ` if and only if L(Θ) is semisimple.

Proof. It follows from theorem 3.1.10 together with theorem 2.4.1(v).

Remark 3.1.12. From theorem 3.1.10 and theorem 2.4.2 it follows that the identity

Θ` = Θ|=

holds in the following cases:

(i) when Θ is maximally consistent (i.e. IΘ is maximal);

(ii) when Θ is finite;

(iii) when Θ = Θn is the infinite set of axioms for MVn-algebras, for n > 1;

(iv) when for each point x in the boundary of XΘ the set {x0, x1, . . . } is linearly

independent if the Q-vectorspace R.
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3.2 Stable consequence relation

As we have observed the classical notion of semantic consequence of a set Θ of formulas fails

to be strongly complete. In this section we shall give a new notion of semantic consequence,

that turns out to coincide with syntactic consequence, introducing a new and enriched

definition of valuation.

Definition 3.2.1. For n = 1, 2, . . . and let u = (u0, u1, . . . , ut) be a (t+1)-uple of elements

of Rn where u1, . . . , ut are pairwise orthogonal unit vectors. For each m = 1, 2, . . . let the

t-simplex Tu,m ⊆ Rn be defined as follows

Tu,m = conv{u0, u0 + u1/m, u0 + u1/m+ u2/m
2, . . . , u0 + u1/m+ u2/m

2 + · · ·+ ut/m
t}

We say that u is a differential valuation of order t in Rn if for all large m the t-simplex

Tu,m is contained in the n-cube [0,1]n.

Proposition 3.2.2. Let u = (u0, u1, . . . , ut) be a differential valuation, then we have

(i) For all m = 1,2, . . . , Tu,m ⊇ Tu,m+1

(ii) For each u-simplex

T = conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · εtut}

there is m = 1, 2, . . . such that Tu,m ⊆ T .

Proof. (i)-(ii) are easily verified by induction.

Definition 3.2.3. Let u = (u0, u1, . . . , ut) be a differential evaluation, we define the subset

Pu of Mn as follows

Pu = {f ∈Mn | f−1(0) ⊃ Tu,m for some m}

Proposition 3.2.4. Let u = (u0, u1, . . . , ut) be a differential valuation.

(i) The set Pu is a prime ideal of Mn;

(ii) Every prime ideal J of Mn has the form J = Pv for some differential valuation

v.
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Proof. These two properties follows from proposition 3.2.2 together with proposition 2.5.1

and corollary 2.5.16.

Remark 3.2.5. Let u = (u0, u1, . . . , ut) be a differential valuation in Rn, then the prime

ideals of Mn can be visualized as follows:

(0) Pu0 is the maximal ideal of Mn given by all functions of Mn that vanish at u0

(theorem 2.2.4);

(1) P(u0,u1) is the prime ideal of Mn given by all functions of Mn that vanish on an

interval of the form

conv{u0, u0 + u1/m}

for some integer m > 0. Equivalently, Pu is given by all functions f ∈ Mn such

that f(u0) = 0 and ∂f(u0)/∂u1 = 0;

(2) P(u0,u1,u2) is the prime ideal of Mn given by all functions of Mn that vanish on a

set of the form

conv{u0, u0 + u1/m, u0 + u1/m+ u2/m
2}

for some integer m > 0. Equivalently P(u0,u1,u2) is given by all functions f ∈Mn

such that f vanishes on an interval of the form conv{u0, u0 + u1/m}, for some

integer m > 0, and ∂f(y)/∂u2 = 0 for all y ∈ relint(conv{u0, u0 + u1/m}).

(t) P(u0, ..., ut) is the prime ideal of Mn given by all f ∈ Mn such that, for some

integer m > 0, f vanishes on the (t− 1)-simplex

T = conv{u0, u0 + u1/m, . . . , u0 + u1/m+ · · ·ut/mt}

and ∂f(y)/∂ut = 0 for all y ∈ relint(T ).

Observe that Pu0
⊇ P(u0,u1) ⊇ · · · ⊇ P(u0, ..., ut).

Definition 3.2.6. Let u = (u0, u1, . . . , ut) be a differential valuation in Rn and let φ(X1, . . . , Xn)

be a formula. We say that u satisfies φ if 1− fφ ∈ Pu. Thus

fφ(u0) = 1 ∂fφ(u0)/∂u1 = 0
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and 1− fφ satisfies the conditions (2) through (t) in remark 3.2.5.

Definition 3.2.7. Given Θ ⊆ FORMn and φ ∈ FORMn we say that φ is a stable conse-

quence of Θ, in symbols

Θ |=∂ φ

if φ is satisfied by every differential valuation u = (u0, . . . , ut) that satisfies every θ ∈ Θ.

Remark 3.2.8. Observe that the traditional valuation coincides with differential valuation

of order 0, therefore Θ |= φ if and only if φ is satisfied by every differential valuation of

order 0 which satisfies every θ ∈ Θ. Therefore if Θ |=∂ φ then Θ |= φ.

Theorem 3.2.9. Given Θ ⊆ FORMn and φ ∈ FORMn, then

Θ |=∂ φ ⇔ Θ ` φ

Proof. Let IΘ = 〈1 − fθ | θ ∈ Θ〉 be the ideal of Mn generated by the functions given by

all negations of formulas in Θ.

Θ ` φ iff 1− fφ ∈ IΘ by proposition 3.1.7

iff 1− fφ belongs to every prime ideal P ⊇ IΘ by corollary 1.1.30

iff 1− fφ belongs to every prime ideal P such that 1− fθ ∈ P ∀θ ∈ Θ

iff for every differential valutation u in Rn, if 1− fθ ∈ Pu ∀θ ∈ Θ then 1− fφ ∈ Pu,

by proposition 3.2.4

iff φ is satisfied by all differential valuation u satisfying all θ ∈ Θ, by definition 3.2.6

iff Θ |=∂ φ

By theorem 3.2.9, we have the following result which states the compactness of |=∂ .

Corollary 3.2.10. Let Θ ⊆ FORMn and φ ∈ FORMn. Then

Θ |=∂ φ if and only if {θ1, . . . , θk} |=∂ φ

for some finite set {θ1, . . . , θk} ⊆ Θ.
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Since FORMn ⊆ FORMn+1, it seems that the definition of Θ |=∂ φ depends on n, so

that we might use a more accurate notation Θ |=∂ φ. Nevertheless, the following proposition

shows that this extra notation is not necessary.

Proposition 3.2.11. Let Θ ⊆ FORMn and φ ∈ FORMn. Then for any m ≥ n

Θ |=n,∂ φ if and only if Θ |=m,∂ φ

Proof. One implication is trivial. Conversely, if we suppose that Θ |=m,∂ φ, since φ and Θ

are built from a finite set of n ≥ 1 variables, for the truth of φ we need only a finite subset

of these variables. Hence Θ |=n,∂ φ.

Definition 3.2.12. Given a set Θ ⊆ FORMn, we denote with Θ|=∂ the set of all stable

consequences of Θ, in symbols

Θ|=∂ = {φ ∈ FORMn | Θ |=∂ φ}

Theorem 3.2.13. Let Θ ⊆ FORMn. Then L(Θ) is semisimple if and only if Θ|= =

Θ|=∂ = Θ`. Thus L(Θ) is not semisimple if and only if there is φ ∈ FORMn such that

every differential valuation of order 0 satisfying Θ satisfies φ and there is a differential

valuation u satisfying Θ but not φ.

Proof. By corollary 3.1.11 together with theorem 3.2.9.

Theorem 3.2.14. Let Θ ⊆ FORMn. Then L(Θ) is strongly semisimple if and only if for

all φ ∈ FORMn

(Θ ∪ {φ})|= = (Θ ∪ {φ})|=∂

Proof. For any Θ′ such that Θ ⊆ Θ′ ⊆ Θ`, by proposition 3.1.7 and proposition 1.6.8, we

have L(Θ) = L(Θ′) = L(Θ`). Whence, without loss of generality, we can assume Θ = Θ`.

Therefore the set {1− fθ | θ ∈ Θ} is the ideal IΘ of Mn. Since the map

ι :
φ

≡Θ
∈ L(Θ)→ 1− fφ

IΘ
∈ Mn

IΘ

is an isomorphism, the principal ideal 〈φ/≡Θ〉 of L(Θ) corresponds via ι to the principal

ideal 〈{1− fφ}/IΘ〉 of Mn/IΘ. Then we have the identities〈1− fφ
IΘ

〉
=
〈1− fφ〉
IΘ

=
〈IΘ ∪ {1− fφ}〉

IΘ
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Therefore L(Θ) is strongly semisimple iff Mn/IΘ is strongly semisimple iff for any principal

ideal 〈IΘ ∪ {1− fφ}〉/IΘ of Mn, the quotient

Mn/IΘ
〈IΘ ∪ {1− fφ}〉/IΘ

∼=
Mn

〈IΘ ∪ {1− fφ}〉

is semisimple. It is equivalent to say that L(Θ∪{φ}) is semisimple for every φ ∈ FORMn.

Therefore, by theorem 3.2.9, L(Θ) is strongly semisimple iff (Θ∪{φ})|= = (Θ∪{φ})|=∂ .
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[7] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, Springer, 2003.

[8] Mundici D., Interpretation of AF C∗-Algebras in  Lukasiewicz Sentential Calculus, Jour-

nal of Functional Analysis, 65 (1986), 15-63.

[9] Mundici D., The derivative of truth in  Lukasiewicz sentential calculus, Contemporary

Mathematics, Vol. 69, 1988.

[10] Mundici D., The differential semantics of  Lukasiewicz syntactic consequence, arXiv,

1207.5713v1, July 2012.

73


	Introduction
	Preliminary notions
	MV-algebras
	Subdirect representation of MV-algebras
	MV-equations
	Free MV-algebras
	An introduction to Łukasiewicz propositional calculus Ł
	Lindenbaum algebra and theories

	MV-algebras of McNaughton functions
	McNaughton functions
	Simplexes, triangulations and indexes

	Ideals of M
	Simple and semisimple MV-algebras
	Quotients of M
	Prime ideals of Mn

	Strong completeness in Łukasiewicz propositional logic Ł
	Semantic consequence relation in Ł
	Stable consequence relation

	Bibliography

