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I use logic all the time in mathematics, and it seems to
yield “correct” results, but in mathematics “correct” by and
large means “logical”, so I'm back where I started.

I can’t defend logic because I can’t remove my glasses.
Richard J. Trudeau
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Introduction

The notion of completeness is one of the most important in mathematical logic since it
links semantics with syntax. For instance in the classical propositional logic the notion of
tautology can be given in two different ways. On the one hand we have the set of semantic
tautologies which are those formulas 7 such that, for each valuation v into the Boolean
algebra {0,1}, v(7) = 1, in symbols = 7. On the other hand, we have the set of syntactic
tautologies which are those formulas which can be derived from axioms by substitution
and modus pones, in symbols 7 is tautology if F 7. Thanks to the completeness theorem
we know that these two approaches give the same set of formulas. With the birth of non-
classical logic one wondered if the completeness theorem was still valid. In this thesis the
attention is focused on the completeness in Lukasiewicz propositional logic L., that is a
non-classical logic introduced by Jan Lukasiewicz and Alfred Tarski in 1930. As in classical
propositional logic, in L., we can define the two sets of semantic and syntactic tautologies.
In 1958 Alan Rose and J. Barkley Rosser give a proof of completeness theorem in L.
However, even though we have the completeness for the set of tautologies both in classical
propositional logic and in Lukasiewicz propositional logic, things change if we refer to the
strong completeness. Given a nonempty set of formulas © we can refer to deductive closure
of © in two different ways. We say that a formula ¢ is a semantic consequence of ©, in
symbols © = ¢, if for each valuation v such that v(d) = 1, for all # € © then v(¢p) =1
(this is the Bolzano-Tarski paradigm). On the other hand, ¢ is a syntactic consequence
of ©, in symbols © ¢, if there is a proof of ¢ from ©. In classical logic the two sets of
semantic and syntactic consequences coincide, while in L., as we shall see, these two sets
do not coincide in general. The reason why we do not have the strong completeness in L,

lies in the notion of semantic consequence which turns out to be unsuitable. In fact when
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we consider the semantic consequences of a set © of formulas we refer to valuations which
can be seen has homomorphism from the Lindenbaum algebra L of L, to the MV -algebra
[0,1]. In particular there is a one-one correspondence between the set of all valuations and
the set of maximal ideals of L and each valuation can be seen as a quotient of L respect
to a maximal ideal M. In Boolean algebras, the maximal ideals have the property of
being irreducible, while maximal ideals of MV -algebras do not have this property which
is crucial for completeness. Suppose that © F ¢, with © nonempty set of formulas, then
the class [¢]/I(©) = 1 in the quotient L/I(©), where I(©) is the ideal of L generated by
[©]. Denoting with A the quotient L/I(0) and with M(A) the set of its maximal ideals,
we can consider the family of quotients {A/M | M € M(A)} and the homomorphism

B:ra=[a]/I®) € A= (a/M | MeMA))e [] A/M

MEM(A)

Requiring completeness is equivalent to requiring that the map S is injective which is
equivalent to ask that I(©) = (¢ e) M with M maximal ideal of L. But whenever we
consider a proper ideal J of an MV -algebra, it is not always true that it coincides with the
intersection of all maximal ideals which contains it. In Boolean algebras this property is
satisfied by the maximal ideals since they coincide with the irreducible ideals. Moreover,
maximal ideals in MV -algebras are ’too big’ and, therefore, they give 'too small’ quotients.
This entails a loss of information in a sense that will be clarified. Therefore, we want to
find a family of ideals which gives us bigger quotients and could give us a new notion of
valuation that turns out to be strongly complete. As we shall see, the prime ideals of any
MYV -algebra are irreducible, i.e. each proper ideal of A is the intersection of all prime ideals
which contain it. Thus, through the study and the characterization of prime ideals of the
Lindenbaum algebra L of L, we shall give new enriched notions of valuation and semantic
consequence which could give us the completeness in the strong sense.
The thesis is structured as follows.
In Chapter 1 we give some necessary basic notions concerning MV -algebras, in particular
we give an introduction to free MV -algebras which will be characterized in the subsequent
chapter. Then we give some basic notions about Lukasiewicz propositional calculus and

the connections between the Lindenbaum algebra and the theories.
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Thanks to McNaughton theorem the free MV -algebras over k-generators can be seen as the
MYV-algebra of McNaughton functions M) given by piecewise linear functions with integer
coefficients defined over [0,1]* with values in [0,1]. In Chapter 2 we study the ideals of
the MV -algebra of McNaughton functions M given by all McNaughton function defined in
[0,1]“, giving some results concerning quotients of M. In particular we give a geometrical
characterization for prime ideals of M,,, with n € N.

In Chapter 3 we face the problem of completeness. First of all we give an algebraic interpre-
tation of the sets of semantic and syntactic consequences of a set © of formulas in order to
give some necessary and sufficient conditions for these two sets to coincide. What we find
is that the completeness theorem is satisfied if and only if the Lindenbaum algebra of © is
semisimple which is equivalent to say that the ideal of the Lindenbaum algebra L generated
by [©O] coincides with the intersection of all maximal ideals which contain it. Subsequently
we give the notion of differential valuations which can be seen as an evolution of usual
valuations. These new valuations are linked with prime ideals and through them we give a

new notion of semantic consequence which satisfies the strong completeness theorem.



Chapter 1

Preliminary notions

The following chapter is useful to be in touch with the argument we are treating. It is known
that classical logic gives rise to the study of Boolean algebras, similarly M V-algebras are
the algebraic semantics of Lukasiewicz many-valued logic, as a matter of fact the letters
"MV’ stand for many-valued logic.

Thus, in this chapter some basic notions about MV -algebras, concerning both the arith-
metics and the structure of these algebras, are explained. In particular we shall introduce
the free MV -algebras whose study will be deepened in the next chapter giving an impor-
tant characterization for these particular MV -algebras. Moreover, in the last sections, we
shall give an introduction to Lukasiewicz propositional calculus L, reserving a particular
interest for the Lindenbaum Algebra and for the theories.

For all the unexplained notions we refer to [3], [2] and [3].

1.1 MYV-algebras

Definition 1.1.1. An MV-algebra is an algebra (A, ®,—,0) with a binary operation @, a

unary operation — and a constant 0 satisfying the following equations:
MV1) 2®(ydz)=(zdy) 2
MV2) 2@y=ydax
MV3) z®0=x

MV4) ——z ==z
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MV5) @& =0 = -0

MV6) =(-rz@y)dy=-(-yoz)dw

In particular, axioms MV1)-MV3) state that (A,®,—,0) is an abelian monoid. The
singleton {0} is a trivial example of MV-algebra. An MV-Algebra is nontriavial if and only
if its universe has more than one element. We shall denote any MV-algebra (A, ®,—,0)

with its universe A.
Example 1.1.2. The real unit interval [0,1] with the following operations
B Y =qer min(l,z +y)
T =gef 1 —
is an MV-algebra, denoted by [0,1].

Example 1.1.3. If (A, V, A, —,0) is a Boolean algebra, then (A, V, —,0) is an MV-algebra
where V, — and 0 denote the joint, the complement and the smallest element in A, respec-

tively.

Example 1.1.4. Given an MV-algebra A and a non-empty set X, the set A of all
functions f: X — A is an MV -algebra with the operations & and — defined pointwise as

follows

In any MV-algebra A we define the constant 1 and the operations @ and © as follows:
1. 1 =gef =0

2. TOY =def ~(—7 @ y)

3. TOY =geyr TO Y

Recalling the example 1.1.2, in the MV-algebra [0,1] we have z ® y = maxz(0,2 +y — 1)
and  © y = max(0,z —y). Thus, an MV-algebra is nontrivial if and only if 0 # 1 and the

following identities hold for every z,y € A:
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MV7) -1 =0
MV8) 2 @y = ~(—z © —y)
MV9) 2@ -z =1
Axioms MV5) and MVG6) can be written as:
MV5) z@l1=1

MVe6’) (zey)dy=(yox)dx

Lemma 1.1.5. Considering an MV -algebra A, for any two elements x,y € A the following

are equivalent
(i) ~xdy=1
(i) ©® -y =0
(iii) y=z® (y© x)
(iv) there is an element z € A such that t ® z =y

Proof. (i) — (ii) It follows from axioms MV4) and MVT7).

(ii) — (i4i) By MV3) and MV6").

(#i7) — (iv) It is sufficient to take z =y © x.

(iv) — (i) By MV9), -z @z ® z = 1. O

For any two elements z,y € A, we can defined the relation
r <y

saying that = < y if and only if  and y satisfy the equivalent conditions of lemma 1.1.5.
One can easily observe that < is a partial order, called the natural order of A: the reflexivity
is equivalent to MV9), antisymmetry follows from conditions (i7) and (4i7) of lemma 1.1.5,

and transitivity follows from conditions (iv).

Definition 1.1.6. An MV-algebra whose natural order is total is called an MV-chain.
8
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Remark 1.1.7. Note that, by lemma 1.1.5(%v), the order of the MV-chain [0,1] coincides

with the natural order of the real numbers.

Lemma 1.1.8. Let A be an MV -algebra. For each a € A, —a is the unique solution of the

abzr=1
a®zxr=0

Proof. By lemma 1.1.5, from these two equations —a < x and —a > x. Thus, x = —a. [

simultaneous equations:

Lemma 1.1.9. In every MV -algebra A the natural order < has the following properties:

(i) v <y iff oy <z

(i) if v <y then foreach z€ A,z @z <y®zandz Oz <y z

(i) Oy <zifft <-ydz

Proof. (i). It follows from lemma 1.1.5(7), since -z ® y = -~y ® —x.
(#t). The monotonicity of @ is an immediate consequence of lemma 1.1.5(iv); using () it
is easy to check the monotonicity of ®.

(44¢). It is sufficient to note that @y < zis equivalent to 1 = =(zOy)Pz = z@-ySz. O

Proposition 1.1.10. On each MV -algebra A the natural order determines a lattice struc-
ture. Specifically, the join © V y and the meet x ANy of the elements x and y are given

by:
() zVy=(z0y)®y=(x0y) By
(ii) x Ny ==(-zV-y) =z6 (tySy)
Proof. To prove (i), by MV6’), MV9) and lemma 1.1.9(ii), we have:

r<(z6y) Py
y<(zoy)®y.

9
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Suppose that © < z and y < z. Then, by lemma 1.1.5, "2 @z =1and z = (2 S y) D y.
Thus by MV6’):

oy oy orz=((oy) oy dyd(20Y)
=yo-(zoy)d-(roy) & (20Y)
=yo-(zoy) e 20yd(20Y)

=yo-(zoy)eazoz=1

It follows that (z © y) ® y < z, which completes the proof of (¢). Condition (i7) is a

consequence of (i) combined with lemma 1.1.9. O
Proposition 1.1.11. The following equations hold in every MV -algebra:

(i) x©(yVz)=(xoy)V(xOz2)

(1)) z®(YyA2)=(z®y)A(z D 2)

Proof. By MV6’) and lemma 1.1.9(i1), t @y < 2@ (yVz) and x®2 < z® (y V 2z). Suppose
that t ®y < t and  ® z < t. Then by lemma 1.1.9(iii), y < -z ® ¢ and z < —x B t,
whence y V z < =z @ ¢t. One more application of lemma 1.1.9(#i) yields (y V 2) @ z < ¢,
which completes the proof of (7). It is easy to see that (i7) is a consequence of (i) using

lemma 1.1.9(7), together with MV4) and MVS8). O
Definition 1.1.12. Let A be an M V-algebra. For each x € A and each integer n > 0

0z =0

(n+lz=nzxdx

Lemma 1.1.13. Let x and y be elements of an MV -algebra A. If x Ay = 0 then for each

integer n > 0, nx Any = 0.

Proof. Suppose that 2 Ay = 0. By monotonicity (lemma 1.1.9) and distributivity of A
(proposition 1.1.11), we obtain x = 2 ® (z Ay) = (x D x) A (x ®y) > 2z A 2y, whence
0=xzAy >2xA2y. It follows that 0 = 22 A2y = 4o ANdy = 8x A8y = ... . The conclusion

follows from nx A ny < 2"x A 2"y = 0. O
10
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Definition 1.1.14. A subalgebra of an MV -algebra is a subset B of A containing the zero

element of A and closed under the operations of A.

Recalling the example 1.1.2, for each integer n > 2, the n-element sets:
L, =def {07 1/(” - 1)3 R (’ﬂ - 2)/(” - 2)7 1}

yield examples of subalgebras of [0,1].
Recalling the example 1.1.4, the set of continuous functions from [0,1] into [0,1] forms a

subalgebra of the MV -algebra [0,1][0’1].

Definition 1.1.15. Let A and B be MV-algebras. A function h: A — B is a homomor-

phism if and only if, for each z,y € A, it satisfies the following conditions:
(i) h(0)=0
(i) h(z & y) = h() & h(y)
(iii) h(—z) = —-h(x)

If h is one-one we say that h is a monomorphism. If h: A — B is onto B we say that h is
surjective. By isomorphism we shall mean a surjective one-one homomorphism. If there is

an isomorphism from A onto B, we write A = B.

Definition 1.1.16. Given a homomorphism h : A — B, the kernel of h is defined as
follows

Ker(h) =aes h™(0) = {a € A | h(a) = 0}
Definition 1.1.17. A set I C A is an ideal iff the following conditions are satisfied:
(i)oel
(ii) f z,y e I thenzdyel
(iii) if e €e T and y € A, with y <z theny € I

The intersection of any family of ideals of A is still an ideal of A. Let W be a generic subset

of A, the intersection of all ideals J 2O W of A is always an ideal and is called the ideal
11
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generated by W and is denoted by (W). An ideal I is proper iff I £ A; I is prime iff is
proper and given x,y € A either Oy € I or yox € I; I is maximal iff is proper and there
is no proper ideal J C A such that I C J, i.e for each ideal J # I such that I C J then
J = A. We denote with I(A4), P(A) and M(A) the sets of ideals, prime ideals and maximal

ideals of A, respectively.

Lemma 1.1.18. Let W ba a subset of an MV -algebra A. If W = () then (W) = {0}. If
W # 0, then

Wy={zeA|lz<w, & - ®wy, for somews,...w; € W}

For each element z € A, the ideal (z) = ({z}) = {x € A | nz > x for some integer n > 0}

1s called the principal ideal generated by z and, for each a € A and J ideal of A:
(Ju{z})={z € A|z<nz®a, for somen € Nanda € J}

Proposition 1.1.19. For any proper ideal J of an MV -algebra A the following conditions

are equivalent
(i) J is a mazimal ideal of A
(ii) for each x € A, x & J iff ~nx € J for some integer n > 1.

Proof. (i) — (4i). Suppose that J is a maximal ideal of A. If ¢ J, then ({z}UJ) = A
and, by lemma 1.1.18, 1 = nz & a for some integer n > 1 and a € J. Then by lemma 1.1.5
—zn < a € J whence by definition of ideal, -nx € J. Conversely, if z € J, then nz € J for
each integer n > 1; since J is proper —nz ¢ J.

(#) — (i). Let K #+ J be an ideal of A such that J C K. For every « € K \ J it follows,
from the hypothesis, that -nz € J for some integer n > 1. Hence 1 = nz & -nx € K and

K=A. O

Lemma 1.1.20. Let A, B be MV -algebras, and h : A — B a homomorphism. Then the

following properties hold:

(i) For each ideal J of B, the set h™*(J) =qey {x € A | h(x) € J} is an ideal of A.
Thus in particular, Ker(h) is an ideal of A.
12
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(i1) h(z) < h(y) iff toy € Ker(h)
(#3) h is injective iff Ker(h) =0
(iv) Ker(h) # A iff B is nontrivial

(v) Ker(h) is a prime ideal of A iff B is nontrivial and the image h(A), as a subalgebra

of B, is an MV-chain.

Proposition 1.1.21. Let I be an ideal of an MV -algebra A. Then the binary relation =;
on A defined by, for each x,y € A:

r=ryiff(roy)d(yoz)el

is a congruence relation, i.e. =y is an equivalence relation such that x =5 y and t =5 z
imply ~x =5 ~y and c Dt =; y ® z. Moreover I = {x € A| x =5 0} Conversely if = is a
congruence on A, then {x € A | x =0} is an ideal, and z =y iff (xS y) & (yo x) = 0.
Therefore, the correspondence I —=j is a bijection from the set of ideals of A onto the set

of congruences on A.

Given x € A, we denote with x/I the equivalence class of x respect to =; and with
A/I the quotient set A/=;. Since =; is a congruence, the set A/I inherits the structure of

MV -algebra from A defining the following operations:

(/1) =gey (mx/1)

z/I1 DY/l =gef (xDy)/1

We denote with (A/I,@®,—,0/I) the quotient of A by the ideal I, then the correspondence
x — /I defines a surjective homomorphism h; called the natural homomorphism from
A onto the quotient A/I. Note that Ker(h;) = I. The next lemma is a consequence of

lemma 1.1.20.

Lemma 1.1.22. If A, B and C are MV -algebras, and f: A - B and g: A — C are
surjective homomorphisms, then Ker(f) C Ker(g) if and only if there is a surjective ho-

momorphism h: B — C such that ho f = g. This homomorphism h is an isomorphism if

and only if Ker(f) = Ker(g).
13
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Theorem 1.1.23. Let A and B be MV -algebras. If h: A — B is a surjective homomor-
phism, then there is an isomorphism f: A/Ker(h) — B such that f(x/Ker(h)) = h(z) for
all x € A.

Proposition 1.1.24. If an MV -algebra A is a MV -chain then all proper ideals of A are

prime.

Proof. Let I be a proper ideal of A. Since hy: A — A/I is a surjective homomorphism and
A is a MV-chain, A/I is an MV -chain. Whence, by lemma 1.1.20(v), I must be a prime
ideal of A. O

Proposition 1.1.25. Let J be an ideal of an MV -algebra A. Then the map I — hy(I)
determines an inclusion preserving one-one correspondence between the ideals of A con-
taining J and the ideals of the quotient MV -algebra A/J. The inverse map also preserves

inclusions and is obtained by taking the inverse image h; *(K) of each ideal K of A/J.

Proof. Let I be an ideal of A such that J C I. Since h; maps A onto A/J and Ker(h;) =
J C I, by lemma 1.1.20(ii) and MV6°), it follows that h;(I) € I(A/J) and h; ' (hs(I)) C I.
Since the converse inclusion holds for all surjective mappings, then I = h; ' (hs(I)). On
the other hand, by lemma 1.1.20(3), h; ' (K) € I(A) for each K € I(A/.J). To complete the
proof it is sufficient to observe that J = h; ' ({0}) C h; ' (K) and hy(h; ' (K)) = K. O

If A is an M'V-chain, then the set I(A) of ideals of A is totally ordered by inclusion. Indeed,
if I and J were ideals of A such that I € J and J ¢ I then there would be elements a,b € A
such that a € I/J and b € J/I whence a £ b and b £ a, which is impossible.

Theorem 1.1.26.
(i) Every proper ideal J of an MV -algebra A that contains a prime ideal is prime.

(i) For each prime ideal J of A, the set {I € I(A) | J C I} is totally ordered by

inclusion.

Proof. Let J be a prime ideal of A, by lemma 1.1.20(v), the quotient A/.J is an MV -chain

thus, by proposition 1.1.24, all proper ideals of A/J are prime and are totally ordered by
14
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inclusion. This, together with proposition 1.1.25, implies (i4). In order to prove (i), let
us note that if I is a proper ideal of A such that J C I and, again by proposition 1.1.25,
I =hy; (hs(I)), hence I is a prime ideal of A/.J. O

Corollary 1.1.27. Fwvery prime ideal J of an MV -algebra A is contained in a unique

mazimal ideal of A.

Proof. Consider the set
H=4;{I€I(A)|I# Aand J C I}

Since H is totally ordered by inclusion, the set M = Ujcp [ is an ideal of A. M is also
a proper ideal of A because 1 ¢ M. Suppose that there exists K proper ideal of A such
that M C K, therefore J C K and K € H. Hence: K C UjegI = M C K. This implies

K = M, so M is the only maximal ideal containing J. O

Lemma 1.1.28. For every MV -algebra A and ideal J #+ A the following conditions are

equivalent:
(i) J is prime;
(ii) for allz,y € Aifc ANy=0thenx e J orye J;
(iii) for allz,y € Aifx ANy € J thenxz € J ory € J;
(iv) if P and Q are ideals of A and PNQ C J then P C J or Q C J;
(v) if P and Q are ideals of A and PNQ =J then P=J or Q = J;
(vi) if P and Q are ideals of A containing J then P C Q or Q C P;

(vii) for all x,y € A either x — y € J* ory — x € J*, where J* is the filter given by
the set {—z |z € J};

(viti) for all x,y € A eitherzoy e J oryox e J.

The following proposition plays an important role in the proof of Chang’s Subdirect

Representation Theorem 1.2.3.

15
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Proposition 1.1.29. Let A be an MV -algebra, J an ideal of A and a € A\ J. Then there
is a prime ideal P of A such that J C P and a ¢ P.

Proof. By an application of Zorn’s Lemma it is possible to show that there is an ideal
I of A such that I is maximal with respect to the property that J C I and a ¢ I. In
order to show that I is a prime ideal, let z and y be element of A and suppose that both
2oy ¢ I and youx ¢ I (absurdum hypothesis). Then the ideal generated by I and &y must
contain the element a. By lemma 1.1.18, a < s @® p(x © y) for some s € I and some integer
p > 1. Similarly, there is an element ¢ € I and an integer ¢ > 1 such that a <t @ q(y © ).
Let v = s®t and n = max(p,q). Thenu € [,a<udn(zoy) anda <ud (y©x). It
follows that a < (u@n(zoy) A(udnlyez)) =ud (n(zoy) An(y© x)) = u. Hence

a € I, a contradiction. O]
Corollary 1.1.30. Every proper ideal of an MV -algebra is an intersection of prime ideals.

Corollary 1.1.31. FEvery nontrivial MV -algebra has a maximal ideal.

1.2 Subdirect representation of MV -algebras

The direct product of family {A;};er of MV-algebras, where I denotes a nonempty set, is
the MV-algebra, denoted with [[,.; A;, obtained by defining pointwise MV-operations on

the set-theoretical cartesian product of the family. In other words, [],.; A; is the space of

i€l

the functions f: I — |J,.; 4; such that f(i) € A; for all 4 € I, with the two operations —

i€l

and @ defined as follows:

(=)@) =der ~f (@) (f @ 9)(@) =daer (f(i) S g(i))

The zero element of [],.; A; is the function i € I — 0; € A;.

iel
For each j € I it is possible to define a homomorphism onto A;:
i [[Ai = Aj such that 7;(f) =aes f(5)
i€l
This homomorphism is called the j** projection function. In particular, for each MV-
algebra A and nonempty set X, the MV-algebra AX is the direct product of the family

{A;}pex with A, = A for all z € X.
16
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Definition 1.2.1. An MV-algebra A is a subdirect product of a family {A4;};c; of MV-

algebras iff there exists a one-one homomorphism h : A — [[,.; A; such that for each j € I,

iel
the composite map 7; o h is a homomorphism onto A;.

In other words if A is a subdirect product of the family {A;};cr, then A is isomorphic
to the subalgebra h(A) of [[;.; A; and, moreover, the restriction to h(A) of each projection

is a surjective mapping. The following result is a particular case of Birkhoff’s Theorem.

Theorem 1.2.2. An MV -algebra A is a subdirect product of a family {A;}icr tff there is
a family {J;}icr of ideals of A such that

(i) Ai = A/ J; for eachiel

(it) Nier Ji = {0}
Proof. Suppose that A is a subdirect product of a family {A4;};c; of MV-algebras, let h
be a one-one homomorphism given in definition 1.2.1. Consider J; := Ker(n; o h). By
theorem 1.1.23, A; = A/J;. If € (,c; J; then mj(h(x)) = 0 for all j. Then h(z) = 0, and
since h is injective 2 = 0. Therefore (,c; J; = {0}.
Conversely, suppose that {J;};cr is a family of ideals of A satisfying condition (i) and (ii).
Let €; be the isomorphism given by condition (z). Let h be the function
h: A= ][4
icl
defined by stipulating that, for each z € A

(h(2))(i) = ei(x/ i)
by condition (i), it follows that Ker(h) = {0}, whence by lemma 1.1.20(#i¢), h is injective.

Since for each i € I the map a € A — a/J; € A/J; is surjective, then pi; o h maps A onto

A;. Thus, A is a subdirect product of the family {A;}cr. O

Theorem 1.2.3 (Chang’s Subdirect Representation Theorem). Every nontrivial MV -

algebra is a subdirect product of MV-chains.

Proof. By theorem 1.2.2 and lemma 1.1.20(v), an MV-algebra A is a subdirect product of
a family of MV-chains if and only if there is a family {P;};cr of prime ideals of A such

that (,c; P; = {0}. Now it is sufficient to apply corollary 1.1.30 to the ideal {0}. O
17
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1.3 MYV-equations

An important consequence of Chang’s Subdirect Representation Theorem is that to verify
whether an equation holds in all MV-algebras it is sufficient to check that the equation
holds in all MV-chains.

Remark 1.3.1. An MV-equation 7 = o holds in an M V-algebra A if and only if the equation
(treo)® (ceT)=0holds in A. Therefore it can be assumed that all the MV-equation

are of the form p = 0, where p is an MV -term.
Lemma 1.3.2. Let A, B, A; (fori € I) be MV -algebras:
(i) if AlET=0 then S =7 = o for each subalgebra S of A

(i) if h + A — B is a homomorphism, then for each MV -term T in the variables
Ti, ..., T, and each n-uple ay, ..., a, of elements of A we have h(t%(ay,...,a,)) =
7B (h(ay),...,hay)). In particular, when h is surjective, from A |= 7 = o it fol-

lows BET=0
(iii) if A =T =0 for eachi €I then [[,c;,AiET=0

Theorem 1.3.3. Let A be a subdirect product of a family {A;}icr of MV -algebras, let
T =0 be an MV -equation. Then A /=1 =0 if and only if A; =71 =0 for each i € I.

Corollary 1.3.4. An MYV -equation is satisfied by all MV -algebras if and only if it is

satisfied by all MV -chains.

Corollary 1.3.4 becomes more significant in the light of Chang’s Completeness Theorem.

Theorem 1.3.5 (Chang’s Completeness Theorem). An equation holds in [0,1] if and only

if it holds in every MV -algebra.
Proof. See [3, 2.5.3] for details. O

Thus, intuitevely, the two element structure {0,1} stands to Boolean algebras as the interval

[0,1] stands to MV-algebras.
18
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1.4 Free MYV-algebras

Free MV -algebras are 'universal’ objects: it can be shown that every finitely generated MV -
algebra is isomorphic to a quotient of the free MV-algebra over n generators. Moreover,
another important property is that every equation satisfied in the free MV-algebra w-
generated is also satisfied in every M V-algebra.

Let k be an arbitrary cardinal > 1 and consider k distinct propositional variables
Xq witha < k (1.1)

Then each MV-term 7 in the variables {X,}a<k is a finite string of symbols over the
alphabet

{0’ -, D, (7 )a Xa}a<k (12)
For any MV-algebra A the elements of A* have the form
a=(aq |a<k) (1.3)

where each a, with a < k is an element of A. We call o' projection the map 7, : AF — A

such that 7, (@) = ao. The set of projections of A* is denoted by:

P?“Ojk,A —def {ﬂ-a | a < k'} (14)

Definition 1.4.1. For each term 7 in the variables { X, }a< the term function
AR 5 A (1.5)
is given by induction on the complexity of 7 as follows:
L. Xo® =def Ta
2. 04 is the constant function 0 on A*
(™)

3. (=p) =aer ~(p

4. (p@ o) =gey (p* @ o)
19
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The set of all term functions over A* is denoted by Term;”. The operations =* and &4

are defined pointwise as in example 1.1.4, thus Termi™ is a subalgebra of the MV -algebra

AA"

Remark 1.4.2. Each element of Term;” is a function depending on a finite number of

variables.

Lemma 1.4.3. For each MV -algebra A and for each cardinal k > 1, Termi™ is the

smallest subalgebra of AA* containing Proj,™.

Definition 1.4.4. Let A be an MV-algebra and Y be a subset of elements generating A,
A is said to be free over Y and is denoted with Freey iff for every MV -algebra B and

every function f: Y — B, f can be extended to a unique homomorphism F': A — B.

Remark 1.4.5. For any two sets Y and X of the same cardinality k, if A is free over Y
and B is free over X then A = B. Therefore, without ambiguity we can call A "the” free

MV-algebra over k many generators and we can write A = Freey,.

[0,1]

Proposition 1.4.6. For each cardinal k > 1, Termy is the free MV -algebra over

[0,1] [0,1]

Proj , in symbols Termy =~ Freey.

Proof. Let B be an MV-algebra and f: Projk 01—y B be a function. Let b = (Do, - -, bas - )a<k
be the element of B* given by: b, = f(m). We define a function ¢ that maps each term
7, in the variables X, with a < k, into the element 752 (b) € B, where 78 € TermP is the

term function evaluated in B*, determined by 7. By theorem 1.3.5 it follows that:
0i]FT=p = BE7=p

thus,
PP (b) = 77 (b)

In other words, if pl01) = 701] ¢ Termgco’l] then ¢ maps p and 7 in the same element in B.

Since ¢(X4) = XB(b) = b, = f(7a), the function ¢ determines an extension F of f. By
induction, it is easy to check that F'is an homomorphism. In order to prove the uniqueness,
0,1]

let g : Term,”~ — B be an homomorphism extending f. Since F' and g coincide over a
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subalgebra of [0,1][0*1]k containing projections then by lemma 1.4.3 they coincide over all

TermLO’l] . O

The following proposition is an immediate consequence of lemma 1.1.20 and theo-

rem 1.1.23.

Proposition 1.4.7. Let k > 1 be a cardinal and let A be an MV -algebra generated by < k
elements. Then there is an ideal J of the Freey such that A is isomorphic to the quotient

algebra Freey/J.

In the next chapter we will give a more explicit description of elements of the algebras

Freeg, introducing McNaughton functions and some of their properties.

1.5 An introduction to Lukasiewicz propositional cal-
culus L

In the Lukasiewicz propositional calculus L., the negation — and implication — are consid-
ered as the main connectives. Through them it is possible to define the other Lukasiewicz

connectives ® and @ of conjuction and disjunction as follows
a®f =gef "=
a® 5 =def —|(—|a D —|B)

The set of propositional formulas is defined as in the Boolean case, from a denumerable set
of propositional variables Var = {Xg, X1,..., Xpn,... }, through the connectives — and —.

We denote with FORM the set of all formulas.
Definition 1.5.1. The set FORM is given inductively as follows:
(i) Each propositional variable X}, is a formula
(ii) If v is a formula, then (—a) is a formula
(iii) If @ and B are formulas, then (o — $) is a formula

We shall denote with FORM,, the set of all formulas built from a finite subset of n > 1

variables in Var.
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Definition 1.5.2. Let A be an MV-algebra. Then an A-valuation is a function
v: FORM — A
satisfying the following properties, with « and 8 formulas:
(i) v(=a) =des ~v(a)
(ii) v(a = B) =ges v(a) = v(B)
Any A-valuation is uniquely determined by its values
v(Xo), ., 0(Xn), ...

Given an A-valuation v, we say that v satisfies the formula « iff v(a) = 1; a formula «
is a tautology if and only if « is satisfied by all A-valuations. Let o and 8 be formulas,
then o and f are semantically A-equivalent iff v(a) = v(5) for all A-valuations v. Given
O C FORM, a formula « is a semantic A-consequence of O if and only if each A-valuation
v that satisfies all formulas in © also satisfies a. Therefore « is an A-tautology if and only

if a is a semantic A-consequence of the empty set.

Every formula « containing the variables Xy, ..., Xi can be transformed into an MV-
term 7, in the same variables. Conversely, upon replacing every occurrence of the constant
0 in the term 7 with the formula —(X — X), 7 is transformed into a propositional formula
a,. Therefore, there is a one-one correspondence between the propositional formulas and
MYV-terms. The following result can be proved by induction on the number of connectives

in the formula «.

Proposition 1.5.3. Let A be an MV -algebra, let a be a formula and we denote with

Var(a) C{Xi,,...,Xi.} the set of all variables occurring in o, then:
(i) For each A-valuation v, we have
v(a) = at(v(Xy,), ..., v(Xi,))
where a?t: AF — A is the term function defined in definition 1.4.1.

(i) A formula o is an A-tautology if and only if the MV -equation o = 1 holds in A.
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(iii) Two formulas o and  are semantically A-equivalent iff the equation o = 3 holds

in A iff o = pA.

In Lukasiewicz infinite-valued propositional calculus one considers propositional formu-
las equipped with the relation of semantic [0, 1]-equivalence. Next result is a consequence
of proposition 1.5.3 and it is an equivalent formulation of Chang’s Completeness Theorem

1.3.5.

Proposition 1.5.4. A formula « is a [0,1]-tautology iff, for every MV -algebra A, « is an
A-tautology. For any two formulas o and B we have ol = O iff o = B4 for all

MYV -algebras A.

Since we are particularly interested in [0,1]-valuations, we are going to use a lighter no-
tation calling valuation the [0,1]-valuation, tautology the [0,1]-tautology and with semantic
equivalence and consequence the [0,1]-equivalence and [0,1]-consequence.

For each ©® C FORM the set of semantic consequences of © will be denoted with ©F.
The set §F will denote the set of all semantic tautologies, i.e. the set of all valid formulas.

0,1]

Remark 1.5.5. Last results allow us to identify the term function a! and the semantic

equivalence classes of propositional formulas.

Definition 1.5.6. An axiom of the Lukasiewicz infinite-valued propositional calculus is a

formula that can be written in any of the following way:
(A1) o= (B = a)
(A2) (@ = B) = ((B—=) = (a—=7))
(A3) (= B) = B) = ((B—a) = a)
(Ad) (ma— =8) = (B — )
where o, 8 and  are arbitrary formulas.

Definition 1.5.7. A proof from a set © C FORM is a finite string of formulas o, ..., a,

with n > 1 such that for each ¢ < n:

(i) a; is an axiom, or
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(ii) «; belongs to ©, or

(iii) there are j, k € {1,...,7 — 1} such that ay, coincides with the formula (a; — o)

(modus ponens)

The definition of proof allows us to give the definition of provable formula.

Definition 1.5.8. A formula « is provable from a set ®© C FORM, in symbols © F «, if

there is a proof ay,...,q, from © such that o, = .

By a syntactic tautology we shall mean a formula that is provable from the empty set. The
set of provable formulas from © will be denoted with ©7. The set of syntactic tautologies

will be denoted with (.

Theorem 1.5.9. The binary relation = on FORM defined as follows

p=qiff Fpeg

with p,q € FORM, is an equivalence relation, called syntactic equivalence. Moreover the

relation = satisfies the following properties

ifa=~vand B =0 then (o« — ) = (y — 0)

if a = B then ~a = .
The equivalence class of a formula p will be denoted by [p], i.e [p| =4ecf {¢ € FORM | q =

P}

Remark 1.5.10. Given a set © C FORM it is possible to defined another congruence =¢

in FORM as follows

p=eqiff OFp+ ¢

If © = (, the congruence =¢ coincide with the congruence =. Moreover, if p = ¢ then

p =0 q (see [3, 5.11]).
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Theorem 1.5.11. The quotient set FORM/ = is an MV -algebra equipped with the oper-
ations = and @& and the constant 0, defined by:

—[o] =dey [0l

(o] @ [B] =des [~ = ]

0 =ges —[0"] = {a € FORM | there is 8 € 0" such that @ = -3}

Remark 1.5.12. Given a set © C FORM, the quotient FORM /=g is an MV -algebra with

the operation — and @ and the constant 0 defined as in theorem 1.5.11.

The MV -algebra
L =4y (FORM/ =,0, -, &) (1.6)

is called the Lindenbaum algebra of Lukasiewicz infinite-valued propositional calculus.

Proposition 1.5.13. Given the set FORM with the relation = of syntactic equivalence.
It follows that, for all p, g € FORM :

p = q iff for any valuation v, v(p) = v(q)
Proof.
p=qiff v(p — q) =1 =v(q — p) for all valuations v
iff min(1, 1 —v(p) +v(q)) =1 =min(1, 1 —v(q) + v(p)) for all v
iff v(q) — v(p) > 0 and v(p) — v(q) > 0 for all v

iff v(p) = v(q) for all v

Proposition 1.5.14. For every formulas p, p', ¢ € FORM :
(i) [==p] = [p]
(it) [p — q] = —[p] @ [q]
(iti) [=p = —q] = [q — 1]

() if [p] = [p'] then [¢ — p] = [¢ — P']
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Proof. (i). Tt follows from theorem 1.5.11.
(#). —[p) @ [q] = [-p] @ [q] = [-—p — ¢]. Tt is sufficient to show that [-—p — ¢] = [p — ¢].

Let v be a valuation, then:
v(==p = q) = min(1, 1 —v(=-p) +v(g)) = min(1,1 —v(p) + v(q))

thus, the thesis follows from proposition 1.5.13.
(#4i). [-p — —q] = [p] @ [¢]- On the other hand, [¢ — p] = [~q] ® [p].

(iv). For each valuation wv:
v(¢ — p) = min(1, 1 —v(q) +v(p))
=min(1, 1 —v(q) — v(p)) = v(g = p')
The thesis follows again from proposition 1.5.13. O
Proposition 1.5.15. For all p,q € FORM the following are equivalent:
(i) [p] < lq] in the MV-order on the Lindenbaum algebra;
(ii) v(p) < wv(q) for every valuation v;
(i) p — q is valid.
Proof. (iii) + (i1).
p—q isvalidiff v(p — q) =1 for every v valuation
iff 1 = min(1, 1 —v(p) + v(q)) for all v
iff 0 < w(q) — v(p) for all v
[p] < [g] iff =[p] @ [q] =1
iff [p — ¢] = [0"] by proposition 1.5.14

iff v(p = q) =1 for all v.

iff p — ¢ is valid.
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Proposition 1.5.16. For any q1, q2,..., gn € FORM :

@ — (g2 = (- (qgn — p)) ) s valid iff [(1] @ -+ © [gn] < [p] (1.7)

Proof. See [3, 4.11] for details. O

1.6 Lindenbaum algebra and theories

In the section 1.5 we introduced the Lindenbaum algebra L of L. In this section we will

give the notion of theory in Lo, and we will give some results involving quotients of L.

Proposition 1.6.1. Up to isomorphism, the Lindenbaum algebra L coincides with the
free MV -algebra over the generating set {[Xol,[X1],...} of logical equivalence classes of

propositional variables.

Proof. Let ¢: L — Term,,'® be the map defined by stipulating that ¢([a]) = al®!. The

proposition 1.5.13 implies that ¢ is an isomorphism of the Lindenbaum algebra L onto

[0,1]

the term algebra Term,""'. In particular, the restriction of ¢ to the set of equivalence

classes of propositional variables gives us a bijection from this set onto the set of projection

functions {mg, 71, ... }. The conclusion follows from proposition 1.4.6, thus L = Free,,. O

Definition 1.6.2. A theory of Lukasiewicz infinite-valued propositional calculus is a set ©

of formulas satisfying the following conditions:
(i) all axioms belong to ©
(ii) f « € ©® and (a« — ) € ©, then B € ©
Proposition 1.6.3. For each set © of formulas:
(i) ©F is the smallest theory containing ©.
(ii) © is a theory iff © = O
(iii) if © is a theory and o € © then |J[a] € ©

Proof. (i). From the definition 1.6.2 it follow that ©" is a theory. In order to prove that

OF is the smallest theory containing ©, suppose that I' is a theory such that © C I'. By
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induction on n we shall prove that if «ay,...,qa, is a proof from © then a,, € T', thus
O CT. If n = 1 then «; is either an axiom or a formula in ©, in both cases it follows
from definition 1.6.2 that ay € I'. Suppose n > 1 and suppose that, for each proof from
0, ay,...,qy, with m <n, a,, € I'. Suppose that ay,...,a, is a proof from ©. If «, is
not an axiom and it does not belong to ©, then there are i,j € {1,...,n} such that o;
coincides with the formula (o; — a,) or, in other words c, follows by modus pones from
a; and «;. Since both a1,...,®; and oy, ...,  are proofs from © with 4, j < n it follows
that o; € ' and (a; = ;) € I'. Thus, always by definition 1.6.2, we have that «,, € I
(ii). It follows from (i).

(iii). If B € [a] then a — B € O and, by the definition 1.6.2, 3 € ©.

Definition 1.6.4. For each set © C FORM we define the set © as follows:
pe®iff gy = (g2 — - (¢gn = p)))---) is a tautology for some qi,..., ¢, € © (1.8)

If © = () then © is the set of all tautologies.
Proposition 1.6.5. Given any two subsets © and I' of FORM we have:

(i) each valid sentence belongs to ©;

(iv) T C © implies rce

Proof. (i). If © = (), the conclusion is immediate and it follows from the definition. Suppose
© # 0 and let p € ©. By proposition 1.5.15, for every valid sentence t € FORM it follows:
p — t is valid iff [p] < [¢] iff [p] < 1. Whence p — t is valid, hence ¢ € ©.

(#4). Suppose © # (). For every p € O the sentence p — p is valid, then p € .

(i73). Assume © = (. Then p € [?) ifft ¢ = (g2 = -+ (gn — p)))---) is valid, with
Q. qn € 0, iff [q1] © -+ ® [gn] < [p], by proposition 1.5.16, iff [p] > 1 iff p is valid
(proposition 1.5.15). Thus, (?) = (). Suppose © # (. In the light of (i) it is sufficient to
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show that é) C ©. In order to prove this inclusion, first note that by (1), 6 =+ (. Whence by
(44), é 0. Ifp €O then the sentence q; — (g2 = -+ (gn — p)))--+) is valid for suitable
qi,...,qn € ©. Then, by proposition 1.5.16, [1] © -~ @ [gn] < [p]. For each ¢; € 6, with
j=1,...,n, there are q{,...,qf;l(j) € © such that q{ — (qé — - gm(G) = ;) --+) is
valid. Hence, always by proposition 1.5.16, [¢!] @ --- ® [qfn(j)] < [g;]- Using monotony of

the operation ©®, it follows:
n m(j) n
I I1i) < [1lg] < [p)
j=1 i=1 j=1
By another application of proposition 1.5.16, it follows that p € e. O
Remark 1.6.6. One can observe that the set © is a theory.

Definition 1.6.7. For any © C FORM, we denote with [©] the subset of L containing

the equivalence classes of formulas in ©, i.e. the set

[©] ={lpl [p € ©} (1.9)

We denote with F(©) the filter generated by [©], i.e. the filter given by the intersection of

all filters in L containing the set [0], and with I(©) the ideal defined as follows
1(0) = F(©)" ={[p] € L | =[p| € F(©)} = {[pl € L | [-p] € F(©)}
Proposition 1.6.8. For every p € FORM and © C FORM the following are equivalent
(1) [p] € F(©)
(ii) [p] € F(O)
(iii) p € ©

Proof. If © = ) then © is the set of all valid sentences, [0] = 0 and F(©) = {[0"]} C L.
F(0) is the filter generated by the set of all [p] such that p is valid, i.e. the filter generated
by the element [)"] € L. Therefore, F(©) = F(©) = {[07]}, and [p] € {[0"7]} iff [p] = [0"]
iff p is valid iff p € ©.
Suppose © = ().
(i)—(ii) it follows from proposition 1.6.5
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(iii)—(ii). Since p — p is a valid sentence, if p € © then [p] € F(O).
(1)< (iil).

[p] € F(©) iff [p] belongs to the filter generated by®/ =
iff [p] > y1 ® -+ ©y, for suitable y; € ©/ =
iff [p] > [q1] © - - - © [gn] for suitable ¢; € ©
iffgg = (g2 — (... (g = p))...) is valid

iffpeé)

(ii)— (iii). [p] € F(O) iff [(1] © - ® [gn] < [p] for suitable ¢; € © (as the previous point of
the proof). It follows that, as in proposition 1.6.5, for all ¢ = 1,...,n there exists q;- €0

such that [¢i] ® - ® [qfn(i)] < [gi], then using monotony of multiplication

I1 [Tl < Tl <t

i

which shows that p € © (proposition 1.5.16). O

Proposition 1.6.9. For each filter F' of L there is © C FORM such that F(©) = F and
© = O. In other words, for each filter F there is a theory © such that F(©O)=F.

Proof. Define © = {p € FORM | [p] € F}. It is easy to observe that © # () since 1 € F.

In order to prove that © = ©, it is sufficient to check only the inclusion © C ©. For every

p € FORM:
PeO = [ O - @gn] < [p] with ¢; € ©
= Yy O - Oyy <[p]withy;, € F
= y < [p] for somey € F
Thus [p] € F, hence p € ©. O

Corollary 1.6.10. For each ideal I of L there is a theory © C FORM such that I = 1(0©).

The quotient L/I(©) is called the Lindenbaum algebra of © and is denoted by L(O).
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Theorem 1.6.11. For every © C FORM
L/I(®) 2 FORM/=¢
Proof. See [3, 5.13, 5.15] for details. O

Moreover, the following result holds for every MV-algebra and it is a consequence of

proposition 1.6.1 and proposition 1.4.7.

Corollary 1.6.12. For every countable MV -algebra A there is a © C FORM such that:

A~ L/I(©)
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Chapter 2

MV -algebras of McNaughton
functions

In the previous chapter we introduced the notion of free MV -algebra over k-generators.
Our main interest is the study of ideals of these particular MV -algebras, in particular,
following [1], we shall give a characterization of prime ideals which will be an important
tool in subsequent discussions concerning the problem of strong completeness. In order to
pursue this aim we shall show some basic properties of the elements of Free; which depend
on whether these elements are continuous [0,1]-valued functions on a compact Hausdorff
topological space. In fact, from Chang’s completeness theorem, each element of the free
MYV-algebra over k generators can be seen as piecewise linear continuous function with
integer coefficients, defined over the cube [0,1]¥ with values in [0,1]. These functions are
known as McNaughton’s functions. The converse is given by McNaughton’s theorem which
states an isomorphism between the MV-algebra of McNaughton’s functions over [0,1]*
with values in [0,1] and the free MV-algebra over k-generators. Whence, McNaughton’s

functions stand to MV-algebras as {0,1}-valued functions stand to Boolean algebras.

2.1 McNaughton functions

Definition 2.1.1. A map r: [0,1]" — [0,1] is a McNaughton function over the cube [0,1]™
iff r is continuous and there is a finite number of linear polynomials p; ... pm, called linear
constituents, with integral coefficients such that, Vz € [0,1]™ there is j € {1,2...,m} with

r(2) = p;(@).
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The aforementioned can be generalized as follows:
Let k be an infinite cardinal, then a function g: [0,1]¥ — [0,1] is a McNaughton function
over [0,1]% iff there are ordinals a(0) < --- < a(m — 1), with m € N, and a McNaughton

function f over [0,1]™ such that for each = € [0,1]*

g(IE) = f(xa(0)7 s 7z(x(’rn—1))

Remark 2.1.2. Since our main interest is the study of Lukasiewicz infinite-valued calculus
with a denumerable set of propositional variables, we are going to study McNaughton
functions defined over the Hilbert cube [0,1]“. If we consider a McNaughton function
f:10,1]* — [0,1], by definition 2.1.1, it depends on a finite number of variables. Let n be
the maximum index of these variables. We can consider the initial segment I,, = {1,...,n},
then the function f depends on a subset of the variables xg, ..., x,. Therefore, we can say
that a map f:[0,1]* — [0,1] is a McNaughton function over the Hilbert cube [0,1]* if and

only if there is n € {1,2...} and a McNaughton function r defined in [0,1]™ such that
f(@)=r(zo,... ,Tn-1) Yz €[0,1]
The set of McNaughton functions over [0,1]*, with the following pointwise operations

-f(z) =1— f(z) Yz € [0,1]"

(f @ 9)(x) = min(1, f(z) + g(x)) Vo € [0,1]*

forms an MV-algebra. For each cardinal k, we denote with My the MV-algebra of Mc-
Naughton functions defined over [0,1]¥ and with M the MV -algebra of McNaughton func-
tions defined over [0,1]“.

The next proposition links McNaughton functions with the free MV -algebras introduced

in the previous chapter.

Proposition 2.1.3. For each cardinal k, if a function f belongs to a free MV -algebra

Freey then f belongs to M.

Proof. The projections and the function 0 which takes the value 0 over [0,1]% are Mec-

Naughton functions. If f and g are McNaughton function with linear constituents p1, ..., pm
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and 71,...,7, then f ® g is given by the linear polynomials p; +7;, foralli =1,...,m and
j =1,...,n, together with the constant function 1. Then, McNaughton functions form

[0,1)*

a subalgebra of [0,1] . By lemma 1.4.3, all term functions are McNaughton functions.

The conclusion follows from proposition 1.4.6. O

As we shall see, McNaughton’s theorem gives us a characterization of elements of free
MYV-algebras, stating the converse of the previous proposition. The following result is
simpler and it does not have the full strength of McNaughton’s theorem, however it is

useful for most applications. First of all, for each real-valued function f, we define

f/\ =def (f\/O) A1l

Lemma 2.1.4. Let g: [0,1]" — R be a linear function with integer coefficient:
g(x) = mozo + -+ Mp_1Tp_1 + MpTp +b

with mg, ..., My, b € Z. Then g™ € Free,

Proof. Let m = |mg| + |m1| + -+ 4+ |mn—1] + |mn|. The proof is by induction on m. If
m = 0 then g coincides with the function O or the function 1. Whence it belongs to
Free,. Suppose that the lemma holds for m — 1. Without loss of generality, assume

|mo| = max(|mol, ..., |m,|). If mg >0, let h = g — 2. Then we have
h=h(zg,...,xzn) =b+ (mg — D)zo + -+ + mpx,

By induction hypothesis both A" and (h + 1)" belong to Free,. We shall prove that for

each = (xg,...,Tp—-1)

(h+z0)" = (W Dxo) ® (h+1)

It is clear that the identity holds whenever z is such that h(x) > 1 or h(x) < —1. If

x is such that h(x) € [0,1], then h"(xz) = h(x) and (h(z) + 1)* = 1. Since zo € [0,1],

(h(z) + z9)" = h(x) ® o, then the equation holds. If h(z) € [—1,0] then h"(z) = 0 and
34



2 — MV -algebras of McNaughton functions

(h(z) + 1) = h(z) + 1, the equation results from the identities

(h(x) + 20)" = max(0, h(x) + z0)
= max(0,z0 + h(z) +1—1)

=120 © (h(z) +1)

Thus the identity holds for each x = (x,...,2,—1). By induction hypothesis and proposi-

tion 1.4.6, we have

(h+ x9)" = g" € Free,

If mg < 0 it is sufficient to apply the same argument to the function 1 — g and show

(1—g)" € Free,. Since 1 — (1 — g)" = ¢g", we have g" € Free,. O

Proposition 2.1.5. For any two distinct points x,y € [0,1]* there exists f € M such that

f(z) =0 and f(y) > 0.

Proof. Let x = (z9,x1,...) and y = (yo,y1,...) be two distinct points of [0,1]*. Without
loss of generality, suppose xg < yo. Let r be a rational number such that zg < r < yq
and let p(z) = az + b be a linear polynomial with integer coefficients such that a > 0 and
r = —b/a. By proposition 1.4.6 and lemma 2.1.4 it follows that the function f(z) = p”(z)
belongs to M, moreover, f(z) =0 and f(y) > 0. O

Theorem 2.1.6 (McNaughton’s theorem). For each cardinal k, the free MV -algebra Freey,

is isomorphic to the set of McNaughton functions Mjy,.

Proof. See [3] for details. O

Remark 2.1.7. The free generating set of M}, is given by canonical projections. In M, we
denote with {p; | i = 0, 1...} the set of canonical projections where p;: [0,1]* — [0,1] is
given by
pi(z) = x; Vo € (0,1
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2.1.1 Simplexes, triangulations and indexes

In order to show some useful properties concerning McNaughton functions defined over
[0,1]“ and to give a geometrical investigation of prime ideals of finitely generated MV-
algebras, in this section we will give some results which link McNaughton functions with
the theory of convex polytopes.

We know that a d-dimensional simplex is a d-dimensional polytope with the least number
of vertices. A point is a 0-dimensional simplex, a 1-dimensional simplex is a segment,

a 2-dimensional simplex is a triangle and a 3-segment is a tetrahedron. Generally, a d-

dimensional simplex has d 4 1 vertices. More formally, suppose that ug, ..., u; are affinely
independent points of R¥, i.e. u; —uo, ..., ur—ug are linearly independent, then the simplex
of vertices uy, ..., ux is given by the set
k
{Nouo + - + Apus | ZAl— =1and )\; > 0Vi}
i=1

Since our main interest is the study of McNaughton functions, we will consider simplexes
which are contained in the cube [0,1]", with n € N. For each n-dimensional simplex

T C [0,1]™ we have:
(i) a list of vertices vg, vy, ..., Un;

(ii) d; > 1, the least common denominator of the coordinates of v;, for each i =

0,...,n;
(iii) a family of uniquely determined integers v;; such that
v = (vio/ds, - - -, Vi(n—1)/di)
0 <wy < d; (j=0,...,n—1)
with ged(vio, ..., Vi(n—1)) = 1.
(iv) vhem € Zn+1 the homogeneous coordinates of the vertices of T

hom __ S
0™ = (Vio, - - -, Vi(n—1),di), 1 =10, 1,...,n

(v) the (n+1) x (n + 1) matrix M7 whose ith row coincides with v?e™.

i
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Definition 2.1.8. A triangulation 7 of [0,1]™ is a set of n-dimensional simplexes such that
the union of all simplexes in T coincides with [0,1]™ and any two simplexes in T are either

disjoint or intersect in a common face.

Definition 2.1.9. A simplex T is said to be unimodular if and only if det(Mrp) = 1. A
triangulation T of [0,1]™ is said unimodular if and only if it is constituted by n-dimensional

unimodular simplexes with rational vertices.

Definition 2.1.10. Let 7 be a unimoldular triangulation and let H be a rational hyper-
plane of R", i.e. a set of points in R™
H={xeR"| Zmlac2 =mp} (m; € Z, for each j =0,...,n)

i=1

where not all of mq, ..., m, are zero. We say that the triangulation 7 respects the rational
hyperplane H if each simplex of 7 is contained in H+ or in H~, where H™ and H~ denote

the two half-spaces defined by H.

Definition 2.1.11. Given a unimodular triangulation 7, a refinement of T is a unimodular

triangulation I such that each simplex of 7 is the union of simplexes of U.

Lemma 2.1.12. Let T be a unimodular triangulation and H be a rational hyperplane of
R™, then there exists a refinement U of T which respects H. Moreover, any two unimodular

triangulations have a joint refinement that respects H.

Notation and terminology. Given a set T we denote with int(7T") the interior of 7' and
with relint(T') the relative interior of T', namely the interior of T relative to the affine hull
of T which is the smallest affine set containg 7. The relative interior is more useful when
we deal with low-dimensional sets placed in higher-dimensional spaces. Given a set T' we
denote with conv(T') the convex hull of T, i.e. the smallest convex set containing 7. The

convex hull of a finite set 7" is given by all convex combinations of its elements.

Definition 2.1.13. For each n € Nand 0 < ¢ < n, a (¢t + 1)-uple u = (ug,...,us) of

vectors in R"” is called index if and only if uq,...,u; are linearly independent vectors and
for some €1,...,¢ € RT the simplex
T = conv{ug, up + €1u1, ug + €1u1 + €aua, ..., ug + €1uy + - - - + €Ut} (2.1)
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called u-simplex, is contained in [0,1]".

Remark 2.1.14. Given and index u, for each j = 0,...,t, we denote with u’ the j-uple

(wo,u1,...,u;). Since also v’ is an index, u/-simplexes are well defined.

Proposition 2.1.15. Let u = (ug, ..., u) be an index. If Ty and Ty are u-simplezes, then

T, NTy contains some u-simplez.

Proof. By induction on ¢. Without loss of generality, suppose that ug = 0. It is easy to

prove the cases t = 0 and t = 1. Suppose ¢ > 1 and consider the u-simplexes

/
Tl = COTM}{O, €1UL, €E1UL + €EQU2,...,€E1UT + 4 Et_lut_l}

TQI CO’H/U{O, AU, AUl + Aolg, ..oy Adqug + - + )\t_lut_l}
T1 = COTLU{O, €1UL, €E1UL + €EQU2,...,€1UT + 4 Etut}

T = CO’I?/U{O, AU, AUl + Aolg, ..oy Adqug + - + )\tut}

1

By induction hypothesis 7] N T4 contains some u'~!-simplex

!
T = conv{0, ajuy, a1uy + aoua, ...,y + -+ + qpug }

Ty and T, are convex sets, therefore for each = € relint(T] NTy) there are 01,02 > 0 such

that z + d1uy € T1 and z + dauy € To, whence, calling § = min{dy,d2}, © + duy € T1 N To.

The point ¢ = Ftuy + GFug+-- -+ a‘2’1 uy—1 can be seen as a convex combination of vertices

of T, then ¢ € relint(T”). Since relint(T') € relint(T] N T4), there exists o such that

c+ auy € Ty NTy. Therefore,

« «
T = conv{0, —1u1, L+ %'UQ, oG cF aut
2 2 2
is an u-simplex such that T' C Ty N T5. O

Theorem 2.1.16. Let f: [0,1]™ — [0,1] be a McNaughton function with linear constituents
P1,- - - Pk, there is a unimodular triangulation T of [0,1]™ such that for each simplex T € T,

f coincides with some p; over T.

Proof. See [3, 3.3.1., 9.1.2.] for details. O
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The next lemma explains a standard tool to construct McNaughton functions starting

from a triangulation and a {0,1}-valued map.

Lemma 2.1.17. Let T be a unimodular triangulation and p a {0,1}-valued map defined
over the vertices of simplexes in T. Let f:[0,1]™ — [0,1] be the unique function that is

linear over each simplex of T and such that Vx vertex of a simplex of T

Then f € M,.
Proof. See [3, 9.1.4] for details. O

Proposition 2.1.18. Let f,g € M then, for some n, there are McNaughton functions r
and s over [0,1]" such that f(z) = r(20,...,2n-1) and g(z) = $(z0,...,2n—1) for all z €
[0,1]“. For each T = (xq,...,Zn-1) € [0,1]" there is a finite family ¥ = {S1,...,Sn} of

n-dimensional simplezes in [0,1]" obeying these conditions:
(i) T is a common vertex of each simplex

(ii) 30 < n <€ R such that S USyU---US}) contains an open set W with x € W of

the form:
W = {(yO, .. ~,yn71) € [0,]_]” | ((yO - 1’0)2 4t (ynfl _ xn71)2)1/2 < 77}

(iii) Vi =1,...,h there are linear polynomials p; and o; with integer coefficients such

that r = p; and s = o; on S;
Proof. Let f,g € M, then there are n,t € N and r € M,, and s € M; such that for each
z €[0,1)*
f(z) =r(z0,-..,2)
9(z) = s(z0, ..., 2t)

With a similar argument of remark 2.1.2, assuming that n = max{q, t}, we have that f(z) =

r(20,...,2,) and g(z) = s(z0,...,2n), Vz € [0,1]“. Whenever we consider a McNaughton
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function f defined over [0,1]", we can find a unimodular triangulation 7 of [0,1]" such that
f is linear over each simplex of 7 (theorem 2.1.16). Therefore, let 77 and 75 be the two
triangulations associated to r and s respectively. By lemma 2.1.12, we can find a joint
refinement V of 77 and 73 such that both r and s are linear over each simplex of V. We can
obtain a new refinement 7 such that Z is a vertex of some simplex of 7. In fact, since T
is a triangulation of [0,1]™, € V for some simplex T' € V, then we can refine the simplex
T connecting each vertex of T" with Z. Call ¥ the set of all simplexes of 7 which have a
vertex in Z, since 7 is a triangulation ¥ is a finite set and there exists 0 < 1 € R such that
the open ball centered in Z of radius 7 is fully contained in the union of all simplexes of .

Hence (¢) and (i77) hold. Finally, (ii7) easily follows from our assumptions on 7. O

Definition 2.1.19. Given two functions f,g € M and z € [0,1]*, f and g have the same

germ at z if and only if f = g on some open set in [0,1]* containing x.

The following proposition emphasizes the role of direction derivatives of McNaughton

functions.

Proposition 2.1.20. Let f € M, z,y € [0,1]¥, uw = y — x then the one-side direction

derivative at x

A—0 A

exists and is finite. Moreover, two functions f and g in M have the same germ at x if and

only if f(x) = g(z) and f'(z;y —x) = ¢'(v;y — x) Yy € [0,1].

Proof. These two properties are an immediate consequence if proposition 2.1.18. O

Proposition 2.1.21. Let f,g € M, by proposition 2.1.18 for some n there are two
McNaughton function r and s defined over [0,1]" such that f(z) = r(zo,...,2n) and
g = 5(20,...,2n) Yz € [0,1]“, then we have that the two functions f and g have the same
germ at x if and only if for each index u = (T, uy,...,uy,), with T = (2o, Z1,...,2Tn), the

two functions r and s coincide over some u-simplez.
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Proof. Suppose that f and g have the same germ at x. Therefore, there exists an open
set A of [0,1]" such that T = (zo,21,...,2,) € A and the two functions r and s coincide
over A. Let u = (Z,uq,...,u,) be an index, then for some €1, €a,...,€; € R, such that the
simplex T' = conv{Z,Z + euy,...,T + €1u; + - - - + €,uy, } is contained in [0,1]™. Therefore,

we can choose another family of coefficients €,€),... e, in a way that the u-simplex

n
T = conv{Z, T+ €juy,...,T+€eju; +---+e,u,} is smaller than T and it is fully contained
in A. Whence, r and s coincide on the u-simplex T”. Iterating this process for each index
of the form u = (z,uy,...,u,), it follows that the two function r and s coincide over some
u-simplex for each index u = (z,uq,...,upy).

Conversely, suppose that the two functions r and s coincide over some u-simplex for each
index u = (Z,u1,...,u,). Then we can consider the family ¥ of u-simplexes with arbitrary
direction u; and fixed ug, ..., u,. Denoting with U the union of all these u-simplexes, then
the two functions r and s coincide over U. Whence, r and s coincide over the open set
int(U). In order to prove that Z € int(U), we can consider the open ball of center Z and
radius n > 0, denoted by Bz ,. If we consider y € Bz, then y = z + h for some h € R™.

Therefore, there is an u-simplex 7" in ¥ such that y € T. Whence, f and g coincide over

an open set containing x. O

2.2 Ideals of M

Definition 2.2.1. For every non empty closed set X C [0,1] it is possible to define two

ideals of M as follows:
Jx={feM|f=0on X}
Ox ={f € M| f =0 on some open set in [0,1] containing X}

we write J, and O, instead of Ji,y and Oy, respectively. Given an ideal J of M, it is

possible to define the following subset of [0,1]*
Vi={zel01]|JCt=n{f10)]| feJ}

Lemma 2.2.2. Let A be a subalgebra of the MV -algebra M then for each x € A the ideal

Jz 18 mazimal in A.

41



2 — MV -algebras of McNaughton functions

Proof. First of all, suppose that A = M. J, is a proper ideal of A because the constant
function 1 is not among its elements. If f € A\ J, then f(z) > 0 and we can find an
integer such that nf(z) < 1. It follows that
nf=1-(f&---df)e
—_———
Whence by proposition 1.1.19 J, is maximal. To complete the proof it is sufficient to
observe that given an MV-algebra B the intersection of a subalgebra and a maximal ideal

of B is a maximal ideal in the subalgebra. O

Proposition 2.2.3. The map
J—=Vy

18 an inclusion reversing map from the set of ideals of M into the family of closed subsets

of [0,1]“. Moreover, Vj £ () for each proper ideal J of M.

Proof. The continuity of each f € M ensures that V; is a closed subset of [0,1], for each
ideal J of M. It is easy to check that the map is inclusion reversing. Let J be a proper
ideal of M. Suppose V; = ) (absurdum hypothesis). The Hilbert cube [0,1]* is a compact
Hausdorff space, then there are f1,..., fs € J with s > 1 such that the intersection of their
zerosets is empty. Let f = f1 @ --- @ fs, then f € J and the zeroset of f is empty. Since
f attains minimum value > 0, there exists an integer m > 1 such that mf(z) > 1 for all

x € [0,1]“. Thus, f&---& f takes value 1 for all € [0,1]“. Since f € J, it follows that
—_—

m times
1 € J and J = M, a contradiction. O
Theorem 2.2.4. (i) The map x — J, is a one-one correspondence between the

Hilbert cube [0,1]“ and the set of mazimal ideals of M.
(i) For each closed set C C [0,1]¥, V;, =C

(iii) For each proper ideal J in [0,1], Jy, is the intersection of all mazimal ideals of

M containing J.

Proof. (i). By lemma 2.2.2 the map = — J,, is a one-one correspondence from [0,1]* into

the set of all maximal ideals of M. In order to prove that the map is onto the set of all
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maximal ideal of M, let J be a maximal ideals of M. Since J is proper, by proposition 2.2.3,
V is a nonempty closed set of [0,1]“. Since for each y € V;, J, D J, then V is a singleton,
in particular V; = {z}.

(#3). Trivially C' C Vj,. In order to prove the converse inclusion, consider z € [0,1]* \ C.
By proposition 2.1.5, for each y € C there is f, € M such that f,(y) = a, > 0 and
f(z) = 0. By continuity, there is an open neighborhood U, such that f,(z) > by = a,/2,
for each y € C and z € U,. By the compactness of [0,1]* there is a finite family of functions
fis.-., ft € M such that, taking f = f1®---® f, f(x) =0 and f(z) > min(by,...,b) >0,

for each z € C. Then, for some integer n > 1, -nf € Jo and -nf(x) =1, thusz ¢ V;,. O

Lemma 2.2.5. Ox and Jx are respectively the smallest and the largest ideal J in M such

that V; = X.

Proof. It is clear that Ox C Jx, so Vj, C Vo, and X C Vj,, by the definition of Jx.
Let J be an ideal in M such that V; = X. Then J C Jx. In fact, if we take an f € J
by our hypothesis on J we have that f =0 on X. We can also observe that J D Ox. We
have only to prove that Vo, C X. If ¢ X then the open set W = [0,1]“ \ X contains an
open set U with z € U and W D U, where U is the closure of U. It is possible to define a
function f € M such that f(z) =0 and f(y) = 1 Vy ¢ U, therefore, there is g € M such
that g(x) =1 and g(y) = 0 Vy ¢ U. In particular, g = 0 on the set Y = [0,1]* \ U that is a

set containing X. Then, g € Ox and since g(z) = 1 we have that z ¢ Vo,. O

We can observe that in the [0,1]-valued case there may be many ideals J in M with V; =
X, in contrast with the two-valued case. The following result gives us a characterization

for the uniqueness of J such that V; = X.
Theorem 2.2.6. For ecach x = (xg,x1,...) € [0,1]* the following are equivalent:

(i) There is only one ideal J in M with Vy = {x}

(ii) The set {1,xz9,21 ...} is linearly independent in the vector space R over Q.
Proof. (i) — (ii). Assume the negation of (i) saying that

0=a-+boxg +bizy +---+brzn (2.2)
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for some nonzero (n+2)-uple (a,bo,...,b,) € Q"2 Without loss of generality we can
suppose a, by, ..., b, € Z. Consider the following function:
f(z)=a+byzo+ -+ bpz, forallzel01)* (2.3)

We can observe that f is not necessarily in M, therefore we can consider g = (fV —f) A L.
Then g € M and there is no open set in [0,1]“ containing x such that g = 0 in this open
set. For otherwise, by 2.1.20, we have ¢'(z;y —x) = 0 for all y € [0,1]*. In particular,
taking the direction derivative along the coordinate axis, we obtain from (2.3): by = b; =
-+ =b, = 0. By (2.2) we have a = 0, thus we have a contradiction with our hypothesis on
(a,bo,b1,...,b,). Then we have that g € J, \ O, and, by lemma 2.2.5, V; = Vo, = {z}.
Therefore (i) does not hold.

In order to prove (ii) + (i), assume the negation of (7), thus by lemma 2.2.5 there is

g € J; \ O,. By Proposition 2.1.20 there is y € [0,1]* such that

g'(zy—z) #0 (2.4)

and by Proposition 2.1.18 there is a McNaughton function s : [0,1]" — R with:

g(z) = s(z0, ..., 2n_1)for all z € [0,1]* (2.5)

and there is 0 < € € R such that for some integers a, by, .. ., b,_1 such that
$(20y -y 2n) =a+bozo+ -+ bp—12n-1 (2.6)
for all points (zo,...,2,) in the segment joining Z = (xg,...,Zn—1) and T + et where

4= (o — Yo,--Tn—1— Yn—1)- Since g € J, from (2.5) and (2.6) we have:
0=s(Z) =a+byxo+ -+ by, (2.7)

If a =by =+ =by, =0 by (2.6) we have s'(z;u) = 0 and hence ¢'(x,y — z) = 0, thus
contradicting (2.4). Therefore, by (2.7) the set {1, o, ...,Zn—1} is not linearly independent

in R as a Q-vectorspace, thus (i) does not hold. O
For every nonempty subset X of [0,1]* the map

p: [ €My — flx € Mi|x
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is a surjective homomorphism. Suppose X = V; for some proper ideal J of A, then it

follows that Ker(p) = Jy,. By lemma 1.1.22 we have the following result.

Proposition 2.2.7. For each J € Z(My,) the map

f/JHf‘VJ

is an isomorphism from My/J onto M|y, if and only if J is an intersection of mazimal

ideal of M.
Theorem 2.2.8. Fach proper principal ideal of My, is an intersection of mazimal ideals.
Proof. See [3, 3.4.9] for details. O
Lemma 2.2.9. Given f,g € My, we have that

g€ () ifg(0) > f7(0)
Proof. See [3, 3.4.8] for details. O

Lemma 2.2.10. Let f,g € M,z € [0,1]?and f(x) = g(x) = 0. If for every y €
[0,1]“,  f'(z;y — x) = 0 implies ¢'(x;y — ) = 0 then for some m € w and open set
U containg x we have:

fo---af>g
—_—

m times
Proof. Consider n,r,s, ¥ = {S1,55...S5,} as in the proposition 2.1.18.
Let Z = (20,21, ...,%,_1) ande;’ be the j*" extremal point of S;, for each i = 1,... h and
j=1,...,n+1. Let u;y = e;7 — 2, since 7(z) = s(Z) = 0 then, by our hypotheses, there

exists n; such that
nir’ (T;u) > s(@;u?) forallj=1,...,n+1

Again by proposition 2.1.18, on the simplex S; the function n;r — s has nonnegative direc-
tional derivative at Z along each direction u;°,. .., u;"*'. Whence by linearity, n;r > s on
Si. Letting m = max(ny,...,ny), we have mr > s on the set [ J; S;, and hence, still by

Proposition 2.1.18, mr > s on some open set in [0,1]* containing Z. By the basic properties
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of the Hilbert cube we have that mf > g on some open set U C [0,1]“ containing x. Since

g <1 then we have

fe---af=1Amf>g onU
T

O

Definition 2.2.11. Given Y C [0,1]¥, denoting with Fr(Y) the boundary of Y, the func-
tion

51 Fr(Y) = P([0,1]°)

is a (principal) germination of Y if and only if ¢ assigns to each z € Fr(Y) a (principal)

proper filter §(z) over the power set of [0,1]«.

Definition 2.2.12. Given Y C [0,1]* and a germination § of Y. We define the set Jy 5 as

follows:
f€Jys iff f=0onYand, Vze Fr(Y), {ye€[0,1]]| f(z;y—2)=0}€d(z) (2.8)

Theorem 2.2.13. (i) Let X C [0,1]“ be a nonempty closed set and § a germination
of X. Then Jx s is a proper ideal in M and V;, , = X.

(i1) Let J be a proper ideal in L and V; = X. Then J = Jx s for some germination
0 of X.

Proof. (i) Denote Jx s = J by proposition 2.1.20. It is easy to see that J is an ideal
in M. Tt is also clear that 1 ¢ J because X # @. In other to prove that V; C X, by
lemma 2.2.5 it is sufficient to prove Ox C J. Consider f € Ox then f = 0 on X and
for each x € X D Fr(X) we have f = 0 on some open set containing x. Therefore, by
proposition 2.1.20 the set {y € [0,1]* | f'(x;y — x) = 0} coincides with [0,1] that is an
element of 6(x). Thus f € J.

(1) To avoid trivialities assume J # {0}. In order to define a germination 4, for each

x € Fr(X), we can consider the family of subsets () in [0,1]* defined as follow:

Y €d(x) if Y 2{yel0,1)*]|f(z;y—x)=0}for some f € J (2.9)
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We can observe that 0 € J, then [0,1]“ € §(z). Since f'(x;y —x) =0 for all f € J, then z
is a common element of all Y € §(z), thus @ ¢ é(x). It is easy to see that if Y7 € §(z) and
Y1 C Ys C [0,1]¥ then Y2 € 6(z). If Y1, Ys € §(x), then there are f1, fo € J such that {y €
0,11 | fi(z;y—2) =0} C Y, for i = 1,2. Letting g = f1® fo, then g € L and g = f1+ f2 on
some open set containing = because f1(z) = fa(z) =0 as x € Fr(X) C V; = X. It follows
that {y € [0,1]“ | ¢'(x;y—x) = 0} C Y1NY>. Therefore 6(z) is a germination of X. Now we
shall show that J = Jx 5. By the eq. (2.9) and the definition of Jx s it is clear that J C Jx 5.
In other to prove the other inclusion, consider g € Jx 5 . For each z € Fr(X) there is a
function f, € J such that {y € [0,1]* | ¢'(x;y —z) =0} D {y € [0,1]* | £/ (z;y — ) = 0}.
Then by lemma 2.2.10 there is an open set U, containing x and m, € w such that

g fo® - ®fo=fs onU, andf,eJ (2.10)

—

The family {U, | x € F'r(X)} is an open cover of the close set F'r(X). Then by compactness
there are x1, ..., zp € Fr(X) such that the set W = Uy, U---UU,, still covers Fr(X).
Let f: fxl @~~@fzk then from 2.10 we havefe J and f > gon W. Since g =0 on X,
then

g<f on some open set U containing x (2.11)

Let b € M defined by b =gV f, then by 2.11 b = f on U whence f* -b=0on U. Since
U D X = Vj it follows that f*'be J. Sincefe J and f*.be J we obtain b = f*~b®f€ J.

Finally, ¢ < b and, therefore, g € J. O

2.3 Simple and semisimple MV -algebras

Definition 2.3.1. An MV-algebra A is called simple iff it has exactly two ideals. In other

words, an MV-algebra A is simple if A is nontrivial and {0} is its only proper ideal.
Theorem 2.3.2. For every MV -algebra A the following conditions are equivalent:
(i) A is simple

(i) A is nontrivial and for every nonzero element x € A there is no integer n > 0

suchthatl=xz&®---dx
o
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(iii) A is isomorphic to a subalgebra of [0,1]

Proof. (i) <> (#i). Suppose that A is simple then the ideal {0} is maximal in A, then (i¢)
follows from proposition 1.1.19. Conversely, (ii) states that {0} is a maximal ideal of A,
hence A is simple.

(#91) — (i1). It is clear that (i7) is satisfied by all subalgebras of [0,1].

(i) — (#47). Assume A is simple. If A has cardinality k, then A is isomorphic to the quotient
Freey/J (by proposition 1.4.7). Since A is simple, the ideal J must be maximal in Freey
(proposition 1.1.25). Therefore, by theorem 2.2.4, there exists a uniquely determined point
x € [0,1]¥ such that J = J,. Therefore, J coincides with the intersection of all maximal
ideals of Freey containing J. Applying proposition 2.2.7, it follows that A is isomorphic
to the MV-algebra Freey|(yy = m.(Freeg), where 7, : Freep — [0,1] is the map given by
7 (f) = f(x). Whence A is isomorphic to a subalgebra of [0,1]. O

Let A be an MV-algebra, we denote with Rad(A) the radical of A, i.e. the intersection

of all maximal ideals of A.

Definition 2.3.3. An MV-algebra A is said to be semisimple iff A is nontrivial and
Rad(A) = {0}.

It is clear that every simple M V-algebra is semisimple. We can also observe that, in the
light of proposition 1.1.25, given an ideal J of an MV-algabra A the quotient A/J is simple
if and only if J is maximal. Therefore by theorem 2.3.2 the quotient A/J is isomorphic to a
subalgebra of [0,1] if and only if J is maximal. As an immediate consequence of Birkhoff’s

theorem we have the following result.

Proposition 2.3.4. An MV -algebra A is semisimple if and only if it is a subdirect product
of subalgebras of [0,1].

Remark 2.3.5. From theorem 2.3.2 it follows that an MV-algebra A is semisimple if and

only if A is a subdirect product of simple MV -algebras.
Corollary 2.3.6. Every free MV -algebra is semisimple.

Proof. Tt follows from proposition 1.4.6 O
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Lemma 2.3.7. Given an MV -algebra A and an ideal J of A, the quotient algebra A/J is

semisimple if and only if J is an intersection of maximal ideals of A.

Proof. Suppose that A/J is semisimple, if {M;};c; denotes the family of all maximal ideals
of A/J and h; denotes the natural projection, then
J=h3'({0}) = hy () Mi) = () hy " (M)
i€l icl
By proposition 1.1.25, J is an intersection of maximal ideals of A. Conversely, suppose
that J is an intersection of maximal ideals of A, then J is the intersection of all maximal
ideals of containing J. Let {M;};c; denote this family, again by proposition 1.1.25, the
set {hj(M;)}ier denotes the family of all maximal ideals of A/J and h;(J) = Rad(A/J).
Whence A/J is semisimple. O

Theorem 2.3.8. An MV -algebra A with k many generators is semisimple if and only if
for some nonempty closed set X C [0,1]%, A is isomorphic to the MV -algebra of restrictions

to X of all functions in Freey

Proof. Suppose that A is semisimple. By proposition 1.4.7, there exists and ideal J of
Freey such that A & Freey/J. By proposition 2.2.7 and lemma 2.3.7, A is isomorphic to
the MV -algebra of restrictions to V; of functions of Freey. The converse direction is a

consequence of proposition 2.3.4. O
Following [4], we can give the following definition.

Definition 2.3.9. An MV-algebra A is strongly semisimple is all its principal quotients

are semisimple.

Remark 2.3.10. Given any MV-algebra A, since {0} is a principal ideal of A, every strongly

semisimple MV -algebra is semisimple.

The following results, known as Wéjcicki’s theorem, follows from theorem 2.2.8 and

lemma 2.3.7.

Theorem 2.3.11. Given an MV -algebra A such that A = Freey/J with J principal ideal

of Freey, then A is semisimple.
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2.4 Quotients of M

Theorem 2.4.1. Let J be a proper ideal in M, and X = Vj, then the following conditions

are equivalent:
(i) J is the set of functions vanishing on X, namely J = Jx
(ii) M/J is the MV -algebra of restrictions to X of functions in M
(i1i) J = Jx s where 6° is the map that assigns to each x € Fr(X) the principal
ultrafilter 6*(x) ={Y D [0,1]* |z € Y}
(iv) J is the intersection of all maximal ideals in M containing J

(v) M/J is isomorphic to a subalgebra of a direct product of simple MV -algebras
Proof. (i) — (ii). Consider f/J, g/J € L/J, then:
flJ=g/Jiff-fOogafO-geJ
ft 1 fOgdfO-g=00onX
iff - f©og=0and fO-g=00on X
iff f=gonX
Then the map i: f/J — f’x induces a bijection of M/.J onto the MV -algebra of restrictions
to X of the functions in M. The map is also an isomorshism.
(7i) <> (v). It follows from theorem 2.3.8.
(1) <> (i79). In order to show that J = Jx = Jx s+, we can observe that
f€Jxse iff f=0o0nX and, for all z € Fr(X), {y €[0,1]“ | f'(z;y —z) =0} € §*(x)
iff f=0o0n X and f'(x;0) =0
iff f=0on X
iff f e Jx
(iv) +» (v). By lemma 2.3.7.
(tv) — (i). Suppose that J is the intersection of all maximal ideals of M containing J, i.e.

J= ﬂ I such that I D J
IeM(M)
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By theorem 2.2.4, for each I € M(M) there exists y € [0,1] such that I = .J,. It is clear
that Jx C J, for all 2z € X. If f € J then f(z) = 0 for all x € X = Vj, hence f € Jx.
Conversely, if f € Jx, then f € J, Vo € X = V. Therefore,
fe(d<C () o=J
rzeX J.CJ

hence f € J. O

Theorem 2.4.2. A proper ideal J of M has the equivalent properties shown in theo-

rem 2.4.1 if J satisfies at least one of the following conditions:
(i) J is mazimal;
(ii) J is finitely generated;

(iii) J is generated by McNaughton functions corresponding to the negations of the

azxioms for MV, algebras with n > 2;

(iv) for each x € Fr(Vy) the set {1,x0,x1...} is linearly independent in the vector

space R over Q;

Proof. (i). If J is maximal then it is clear that it satisfies (iv) of theorem 2.4.1.

(7). Assume J is generated by one element f € M and denote the zeroset of f with
X = f71(0). Our purpose is to prove that J = Jx. It is easy to check that J C Jx.
Assume g € Jx and let z € Fr(X). Let y € [0,1]* be such that ¢'(x;y —x) # 0. Let
u = (y— ). Then for all sufficiently small € > 0 the point z. = x + eu is not in X, because
g=0at x € X and g is linear on the segment [z, z.] by proposition 2.1.18. From z. ¢ X,
f(ze) # 0 we have that f'(z;y—=z) # 0, again by proposition 2.1.18. Then by lemma 2.2.10

there is m, € w and an open set U, containing x such that f @ ... f® > g on U,. As the
—_—

mg times

final part of theorem 2.2.13 in (i4) and recalling J is generated by f, we finally get g € J.
(i4i). By [0] together with theorem 2.4.1.

(iv). Let X = V;. Then by lemma 2.2.5 it is sufficient to prove Ox = Jx, for then J = Jx.
Assume f € Jx \ Ox (absurdum hypothesis), let Z = f~1(0) and let int(Z) denote the

interior of Z. From f € Jx we get Z D X; from f ¢ Ox we get X ¢ int(Z). Then there is
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z € X \int(Z) and z € X \ int(X). Whence z € Fr(X), as X is closed. Since = ¢ int(Z)
then f ¢ O,. Thus f € J, \ O,. By theorem 2.2.6 the set {1,z9,1,...} is not linearly

independent in R seen as a Q-vector space. This contradicts our assumption. O

2.5 Prime ideals of M,,

Proposition 2.5.1. Given an index u = (ug,...,u), with 0 < t < n, the subset Jy, of

Free,, defined as follows
f € Juiff f71(0) contains some u-simplex
s an ideal of M,.

Proof. In order to prove that J, is closed under minorants, suppose that f € J, and
consider g € M, such that g < f. Trivially, f~1(0) C g=*(0), whence g~1(0) contains some
u-simplex, hence g € Jy. If f,g € J, then by definition there are two u-simplexes 77 and
Ty such that

)27 and  ¢gN0) 2T

By proposition 2.1.15 it follows that there exists a u-simplex 7" which is contained in
Ty NTy. Let us consider the zeroset of f @ g then (f @ g)~(0) 2 f71(0) N g~1(0), hence
fdgeJu O

Our next aim is to show that Jy is a prime ideal of M,,. Moreover, we shall see that

every prime ideal J of M, has the form J = J,, for some index u.

Definition 2.5.2. Given a unimodular triangulation 7 of [0,1]" and an index u = (uq, . .., u),

with 0 < ¢ < n, we define the set
T = ﬂ {F | F is a simplex of T and F contains some u-simplex}

which is still a simplex of 7 containing some u-simplex (by proposition 2.1.15). Recalling

the notation w/, it follows that T% is well defined for each j=0,...,t.

Remark 2.5.3. From now on, all triangulations we are going to consider will be unimodular.
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Proposition 2.5.4. For any index u = (ug,...,us), with 0 < t < n, the ideal Jy is a

prime ideal of M,,.

Proof. In order to see that J,, is prime, suppose that f ¢ J, and ¢ ¢ J,. Applying
theorem 2.1.16 together with lemma 2.1.12, there exists a unimodular triangulation 7T
such that f, g, f A g are linear over each simplex of 7. If f vanishes over 7" (absurdum
hypothesis), then f vanishes over some u-simplex ' C T%. Whence f € J,, a contradiction.
It follows that f(x) > 0 for some x € T™". Similarly, g(y) > 0 for some y € T%. From the
assumption about 7 it follows that f and g are positive over relint(7T") and f A g is linear

over T". Therefore, we have that f < g or g < f over T", in either case f A g # 0. Thus,

Jyu is prime. L]
Definition 2.5.5. Given an index u = (uo, ..., u;), we define the set
(') = V(| g € H) (212
and for each i =1,...,¢t
C(u?) = m{H | conv{ug, up + €1us, ..., ug+€1ur +---€ju;} C H} (2.13)

or equivalently,

C(u?) = ﬂ {H | T C H for some u’-simplex T'} (2.14)

A translation of —ug of ((u?) (for each 0 < i < t) yields its associated linear space

Mu?) = C(u?) —up = {x € R" | (x +up) € (v!)} (2.15)

Notation. We shall write ((u) instead of ((u') and A(u) instead of A(u?).

Remark 2.5.6. Given a triangulation 7 and an index u = (ug,...,u:), by definition 2.5.2

and definition 2.5.5 it follows that
dim 7% > dim C(uj) for all j <t

indeed, by unimodularity of 7, each simplex W € T of codimension 1 is contained in a

rational hyperplane.
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Definition 2.5.7. A triangulation 7 is said u-good if
dim 7% = dim C(u) for all j <t

Given a function f € M, a triangulation 7 is said f-good if f is linear over each simplex

of 7. A triangulation 7 which is u-good and f-good is said uf-good.
Lemma 2.5.8. Let u = (ug,...,us) be an index, then:
(i) For every triangulation T, T is a face of T+, in symbols

T g TUit

(ii) Every triangulation T can be refined to a u-good triangulation.

(iii) If W is a refinement of a u-good triangulation T, then W®* C T™ and T" is the

smallest simplex of T containing W*™.

(iv) Every refinement of a u-good triangulation (resp., uf-good) is u-good (resp., uf-

good).
(v) The following identity holds

Ju={f € M, | fl7u =0, for someuf-good triangulation T } (2.16)

(vi) If f € Jy then flys =0, for every uf-good triangulation U.

Proof. (i). Tt is a direct consequence of definition 2.5.2.
(71). Tt follows by lemma 2.1.12.
(4i). Suppose that T is the smallest simplex of 7 containing W" and suppose that 7" # T
(absurdum hypothesis). Since both 7" and T are simplexes of 7 containing some u-
simplex, by proposition 2.1.15, T* N T is a simplex of T containing some u-simplex. By
minimality of 7%, T strictly contains 7" and, by minimality of T, 7% does not contain WW".
Let S = TYNW", again by proposition 2.1.15, S contains some u-simplex R. Furthermore,
since W refines 7, S is simplex of W and () # S C W*". This is in contradiction with the
minimality of W*". Then, T'=T" and W" C T".
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(iv). Let U be a refinement of a u-good triangulation 7. We know that dim? > dim ((u?),
for each j = 0,...,t. From (éii) it follows that &4/ C T7, whence dimU’ < dim 77 =
dim ¢(u). Hence U is u-good.

(v). Consider f € {g € M,, | g|7« = 0}. Then, the zeroset f~1(0) contains some u-simplex,
whence f € J,. Conversely, suppose that f € J,. Then there is a unimodular triangulation
T such that f is linear over each simplex of 7 (by theorem 2.1.16) and f vanishes over
a u-simplex R which is contained in some simplex of 7. By (i), 7 can be refined to a
u-good triangulation. Let U be the u-good refinement of 7, then R is contained in a union
of simplexes of U and each of these simplexes contains a u-simplex. Then U" C R, hence
fluw =0.

(vi). By (v) there exists at least one uf-good triangulation 7 such that f|7« = 0. Let U be
an arbitrary uf-good triangulation. Then, by lemma 2.1.12 there exists a joint refinement

V of T and Y. Then by (iii) and (iv), V* is subset of T NU having the same dimension

of U*. Thus f|yu = 0. Since f is linear over U™, flyu = 0. O
Definition 2.5.9. Let u = (ug, ..., u;) and v = (vg, ..., v,) be indexes, with 0 < ¢ < r < mn.
If u; = v; for each i = 0,...,t then v is called an extension of u. Moreover, if ¢(u') C ((v"),

v is called a proper extension of u.

Lemma 2.5.10. If v is an extension of u, then J, C Jy.

Proof. Let f € Jy, then by lemma 2.5.8(vi) for any v f-good triangulation 7, f vanishes
over TV. It is clear that T is also uf-good and 7% C 7% C TV. Thus f vanishes over T,

whence by lemma 2.5.8(v) f € Jy. O

We can observe that if we consider an index u = (uq,...,us) such that n > ¢, it
may happen that ¢ < dim{(u) < n. For example, if u = up and ug ¢ Q N [0,1]", then
dim ¢(u) > 0. In this case there is an element v € A(u) such that (ug,...,us,v) is a proper

extension.

Definition 2.5.11. Given a triangulation 7 and a simplex F' € T, the star of F in T is

the smallest subcomplex of T containing all simplexes of T that contain F' and it is denoted
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by
st(F;T)

The point-set-theoretical union of st(F'; T) is called closed star and it is denoted by
clstar(F;T)

The interior of clstar(F : T) relative to n-cube is called the open star of F in T and it is
denoted by
ostar(F;T)

then, it follows that
ostar(F;T) = int{x € [0,1]" | In-dimensional T' € T such that z € T D F}
Definition 2.5.12. Given a prime ideal J of M,, the germinal ideal of J, denoted by
germ(J), is the intersection of all prime ideals contained in J, i.e.
germ(J) = m{] C M,, | I is a prime ideal of F'ree, and I C J}

Theorem 2.5.13. Given an u = (ug,...,u:) and a function f € M,, the following condi-

tions are equivalent:
(i) flostar(7e;7) = 0 for some uf-good triangulation T ;

(ii) flostar(7u;) = 0 for all uf-good triangulations T ;

(iii) f € germ(Jy).

Proof. (ii) — (7). It is trivial, in fact at least one uf-good triangulation exists.
(1ii) — (i1). Let T be a uf-good triangulation. By lemma 2.5.8, if f € germ(Jy) C J,
then f|yu = 0. We know that, by definition of 7", there exist real numbers €;,...,¢e > 0
such that

conv{ug, ug + €1u1, ..., ug + €1us + -+ euf ST
Suppose f(z) > 0 for some x € ostar(T";T) (absurdum hypothesis). Then there is a

vector v € A(u)* such that, for all suitably small § > 0, the function f is linear and non

constantly zero over the set

R = conv{ug,ug + €1u1, ..., up + €1ug + - - + €ug, ug + €1uy, . . ., €xup + 6V}
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Then f > 0 over relint(R), if we denote with (u,v) the (¢ + 2)-uple (ug,...,us, v), then
f & Ju,w) otherwise f vanishes over some (u,v)-simplex @ which can be assumed to
be contained in R (by 2.1.15). From lemma 2.5.10 it follows that J,) € Ju and by
proposition 2.5.4 J(y) is prime. Whence J(u.) € germ(Jy), hence f ¢ germ(Jy), a
contradiction.

(i) — (i77). Suppose flostar(ru;7) = 0 for some uf-good triangulation 7. Since 7" C
ostar(T*;T), flyw = 0 and, by 2.5.8, f € Jy. Let J be a prime ideal of M, such that
J C J, and suppose f ¢ J (absurdum hypothesis). Let W be a refinement of 7 obtained via
starring 7 at the mediant of 7%: W has a new vertex b which is obtained by writing each
vertex (vy/v,...,v,,v) of T" in homogeneous coordinates as (v1,...,vn,v), then taking
the sum (s1, ..., s, s) of these vectors, and finally letting b = (s1/s, ..., sn/s). The vertex
b € [0,1]" N Q™ is called the Farey mediant of the vertices of T". The new refinement W is
automatically unimodular, u-good and b € relint(7"). By lemma 2.1.17, we can consider
the function g € F'ree,, obtained by specifying its valued at vertices of W as follows:

o(a) = {1 itz =b

0 if z is any other vertex of W

Then, by lemma 2.5.8, g ¢ J,,, whence g ¢ J. By construction the function g vanish over
the complement of ostar(T™;T) in [0,1]". Then f A g =0 € J, in contradiction with the

primeness of J. O

Proposition 2.5.14. Given an index u = (ug, ..., us) such that dim{(u) < n and a prime
ideal J such that J C Jy, if there does not exists a proper extension v of u such that J C J,

then there is a function f € J and a uf-good triangulation T such that
(i) flra =0
(i) f(xz) >0 for all v € clstar(T*T)\T™

Proof. Let ¢+ denote the affine space given by wuo-translation of A(u)*. Suppose d is the
dimension of ¢+ then ¢ = n — dim((u). Let S be the (¢ — 1)-dimensional sphere of radius

one, centered in vy and lying in ¢*, in symbols

S={z€ (" |dlzu) =1}
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Given an arbitrary unit vector v € A(u)*, the index (u,v) is a proper extension of u. Since
there does not exist a proper extension v of u such that J C Jy, J € Ju,,). Then there
exists f, € J\ Juw). Since J C Jy, fy € Ju. Let T, be a (uv)f-good triangulation.

Trivially 7T, is uf-good, then
folrm =0 and fo(z) > 0 for all z € relint(T, %)) (2.17)
Denote with O, the open star of Tv(u’v) in 7,, it follows that
fo(z) >0 Vo € O, (2.18)

One can observe that f, is linear over each n-simplex of the star of 7:,("’”) in T, and is > 0
over relint(ﬂ(u’v)) C O,. We denote with O/ the projection of O, into (*. The set O/ is
relatively open in ¢ because is a projection of a open set. For each y € O/ we denote with
7 the intersection of the sphere S with the half-line originating in ug and passing through
y. Then the set
O, ={j|ye0,}

is relatively open in the sphere S. If the unit vector v ranges over all unit vectors of A(u)*,
we obtain a family

0 =10, |vert)

which is a open cover of S. Since S is compact, there is a finite subfamily

{001 Ou2)s -+ -+ Oy}

of O which is still a cover of S. For each v(i) we have a function f; = f,;) € J\ Ju,u@)) and
some (u,v(i))-good triangulation 7; = T,(;) such that the conditions expressed in (2.17)
are satisfied.

Claim 1. For each non zero vector w € A\t there is i € {1,...,k} such that the closed star

u,v(i)) . . .
of 7;( ) in 7; contains some (u, w)-simplex
conv{ug,ug + €11, ..., ug + €1uy + -+ + ew}

whose vertex ug + €juy + - - - + ew lies in Ov(i).
Proof claim 1. Let © = ug + w € ¢*. As we have seen previously, & denotes the in-

tersection of S with the half-line originating in uy passing through z. Since the family
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{Ov(l), Ov(2)7 . Ov(k)} is an open cover of S, there exists a v(i) and y € O’U(i) such that y
coincides with ug+dw, for some § > 0. Then, there is a point z = up+e1us+- - - +ew € Oy()
whose projection into ¢+ coincides with y. By definition of O, (i) there is a n-simplex R in
the star of ﬁ("’v(i)) such that z € R. Since R is convex and 7T;" is a proper subface of R,

it follows that
conv{ug,ug + €1uz, ..., ug + €1ur + - + €up +ewp C R C clstar(ﬁ(“’”(i)); T:)

Then the claim is settled.

Consider the function f € J defined by

f=hVfV-Vf (2.19)

where f; is the function associated to the vector v(z), for each i = 1,... k. In the light
of lemma 2.1.12, there exists a jointly f-good refinement 7 of the family 71,...,7;. By
(2.17) and lemma 2.5.8, f;]7u« =0, for each i = 1,..., k. Then, it follows that

flra =0

Claim 2. f(x) > 0 for each z € clstar(T%;T)\ T

Proof claim 2. First of all, assume x € ostar(T";7) \ T*. Then x € relint(T) for a
uniquely determined smallest simplex T' € T in the star of 7%. It follows that 7" is a
proper face of T', whence dim7T > dim T". The vector x — ug con be uniquely written as
r —ug =l +v where | € AM(u) and v € A(u)t. Since x ¢ T, we have v # 0. Then,
the simplex 7' contains some (u,v)-simplex. Denoting with O the closure of the set O, by
Claim 1, the closed star Ov(i) of ﬁ(u’v(i)) in 7; contains some (u,v)-simplex. Then, by

proposition 2.1.15, the simplex 7' N O,(;) contains some (u, v)-simplex
T" = conv{ug, up + €1u1, ..., ug +wius + -+ + wiuy +wv} C TN O_v(i)

Let ¢ € relint(T"). Then ¢ € O, and from (2.18) it follows that f;(c) > 0. Since
f > fi >0 over O, it follows that f(c) > 0. Since c € relint(T) and T is f-good, f >0
over relint(T). Thus f(z) > 0 for all = € relint(T). Our claim is settled in the case when
x € ostar(T™;T)\ T
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Assume z € clstar(T%;T)\ T*. Then we can find a point y € relint(T") (for example y
can be chosen as the Farey mediant of the vertices of T") such that the segment joining
x and y contains some point z € ostar(7T";7) \ T". This segment is contained in some
simplex of the star of 7% and f is linear over all simplexes in 7. Since y € relint(T"),
f(y) = 0 and, by previous discussion, f(z) > 0. Then f(z) > 0 and the claim is settled.

O

Theorem 2.5.15. Given and index u = (ug, ..., us) and a prime ideal J such that J C Jy,

if there exists no proper extension v of u such that J C Jy, then J = Jy.

Proof. Case 1. If dim ((u) = n, then there is no vector v € R™ such that the index (u,v)
is a proper extension of u. Suppose that J C J, (absurdum hypothesis), then there exists
f € Ju\ J and by theorem 2.1.16 there exists a f-good triangulation V which can be
refined to a uf-good triangulation 7 by lemma 2.5.8(i7). Since the zeroset of f contains
some u-simplex, 7" is given by the intersection of all simplexes of 7 which contain some
u-simplex an 7 is uf-good, dim 7" = n and f|7« = 0. As we have done in theorem 2.5.13,
let W be the refinement of 7 obtained by starring 7 at the mediant b of 7%. In the light
of lemma 2.1.17 let g € Free,, be the function determined by specifying its value at each
vertex of W as follows

o(e) = {1 itz =b

0 if x is any other vertex of W

with g linear over each simplex of W. Since f|7u = 0, we have g A f = 0, whence gA f € J.
By construction g € Jy,. Since f ¢ J it follows that J is not prime, a contradiction.

Case 2. If dim ((u) < n, consider g arbitrary function in J,. By proposition 2.5.14 there
exists a function f € J and a uf-good triangulation 7 satisfying the conditions therein.
Our aim is to construct a function h € J such that g is in the ideal generated by f@®h which
is contained in the ideal J, thus showing that J, = J. An application of lemma 2.1.12
yields a ufg-good triangulation V which refines 7. Since g € Jy, then g} = 0 because
T is given by the intersection of all simplex in 7 which contain some u-simplex and g

vanishes over some u-simplex. By lemma 2.5.8, V* C T" therefore g|yu = 0. In the light
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of lemma 2.1.17 let h € Free,, the function

h(z) {0 if x is a vertex of some simplex in the star of V"
xr) =

1 if x is any other vertex of V

with h linear over each simplex of V. Then h vanishes over ostar(V%;V), whence by
theorem 2.5.13 h € germ(Jy). Since by our hypothesis J is prime and J C J,, it follows
that h € J. We can observe that proposition 2.5.14 continues to be satisfied by every
refinement of the triangulation 7. In fact by lemma 2.5.8, V* C T then f vanishes over
V", Thus the condition (i) is easily satisfied by V. First of all, in order to prove that V
satisfied also the second condition, we can observe that if V* = T" the conclusion follows
trivially. If Y C T" it follows that 7" can not be a simplex of V because V" and 7" have
the same dimension (since both of them are u-good) and V is unimodular. Therefore, T
is divided by the operation of refinement which yields V and each part is a simplex of the
refinement V. One of these part is the simplex V" and the other parts of 7% are not in
the closed star of V" in V. Whence the only points of the clstar(V";V) where f vanish
are those of V*. Hence the condition (i) of proposition 2.5.14 is satisfied by V. Therefore,
(f © h)(z) = 0 if and only if z € V*. Since glyu = 0, the zeroset of f @ g is contained in

the zeroset of g, therefore by lemma 2.2.9 g € (f ® h) C J. Hence J,, = J. O
Corollary 2.5.16. FEvery prime ideal J of M, has the form J = Jy for some index u.

Proof. Every prime ideal of M,, is contained in exactly one maximal ideal. As we have seen
in theorem 2.2.4, all maximal ideal of M,, are exactly those of the form J, = {f € M, |
f(z) = 0}, for some z € [0,1]". In other words, if we consider an index u = (ug, u1, ..., u),
Ju, is a maximal ideal, (ug, u1) is an index and it is an extension of the index wg, therefore
by lemma 2.5.10 J(y,,u,) € Ju,- Therefore, iterating this process, we obtain a chain of
prime ideals

Juo 2 J(UO,ul) 2 J(uo,ul,ug) ;) e 2 J(uo,ul,...,ut) (220)

Suppose that u is an index such that J, 2 J and there does not exits a proper extension

v of u such that Jy, O J. Then, by theorem 2.5.15, J = J,. O]
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Chapter 3

Strong completeness in

Lukasiewicz propositional logic
Lo

In this chapter we shall tackle the problem of completeness in Lukasiewicz propositional
logic. As we shall see for the tautologies, the completeness theorem is satisfied, in other
words the set of semantic tautologies coincides with the set of syntactic tautologies. The
situation is very different if we consider the deductive closure of a set of formulas ©. In
fact, in general, the set of semantic consequences does not coincide with the set of syntactic
consequences. We shall show an example of a formula which is a semantic consequence
of a family of formulas © but it is not a syntactic consequence. This example highlights
the inadequacy of the Bolzano-Tarski paradigm, i.e. the usual definition of valuation.
Subsequently we shall establish those cases in which the completeness is satisfied. In
order to do this, following [9], we shall associate the two sets of semantic and syntactic
consequences with two filters in the free MV-algebra and we shall see what conditions
must be satisfied for these two filters to coincide. In the last part of the chapter we shall
define a new concept of valuation giving a new notion of satisfiability in which the prime
ideals will come into play. As done in [10], we shall call these new valuations differential

valuations as they take into account the differential properties of McNaughton functions.
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3.1 Semantic consequence relation in L.

By McNaughton’s theorem 2.1.6 and proposition 1.6.1, for every formula p, the equivalence
class [p] can be identified with a function f,: [0,1]¥ — [0,1] in the MV-algebra of Mc-
Naughton’s functions. We denote with VAL the set of valuations of formulas in FORM.

It can be identified with the Hilbert cube [0,1]* via the restriction map

veVAL: =V € [0,1)#Xo X b = [0,1)¢

= Ulixg. X100}

Then for each p € FORM we have v(p) = f,(V), where V is now realized as the element
(Vo,V1,...) € [0,1]¥ such that V,, = V(X,,). From these observations we can reformulate

the definition of semantic consequence as follows.

Definition 3.1.1. In L, given a set © C FORM it is possible to define the relation =

of semantic consequence, for all p € FORM , by stipulating that:
O E=piff VvV € [0,1], (fy(V)=1forallg e © = f,(V)=1)

On the other hand, the set of syntactic consequences of ©, denoted with ©", is the

smallest subset of FORM closed under modus ponens, containing © and tautologies.

Remark 3.1.2. What has been observed previously can be reported to the case in which the
set of formulas is constructed from a finite set of n > 1 variables. In this case we denote
with VAL, the set of all valuations of formulas in FORM,, and it can be identified with

the unit cube [0,1]™ as we have seen previously.

Lemma 3.1.3. FEach formula provable from a set © C FORM of formulas is also a

semantic consequence of this set. In other words, the following inclusion holds
e" cekF (3.1)
In particular, all provable formulas are tautologies.

Proof. Let v € VAL be a valuation such that v(a) = 1 for all @ € ©. By induction on n we
shall prove that if oy, aa, ..., a, is a proof from © then v(a,) =1. If n = 1 then a4 is an

axiom or it belongs to ©. In the first case, observing that all axioms are tautologies, we have
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v(aq) = 1. In the second case by the hypothesis on v we have v(«1) = 1. Assume n > 1 and

suppose that, for each proof from O, 81, ..., By, with m < n, v(8,,) = 1. Let ay, ..., a,
be a proof from O. If e, is not an axioms and «,, ¢ © then there are 7,5 € {1,...,n} such
that «; is the formula (a; — ;). Since both aq, ..., a; and a4, ..., a; are proofs from

©, by induction hypothesis we have v(a;) = v(c;) = 1. Therefore
1=v(ey) =1—v(an) =v(ay)
O

The converse inclusion is verified for the set of tautologies and it follows from Chang’s
completeness theorem. Recalling the definition of the syntactic equivalence = and Linden-
baum algebra L, we can prove the following result which states that the set of semantic

tautologies )F coincides with the set of syntactic tautologies 0" .

Theorem 3.1.4. FEvery tautology is provable, in symbols
0= =0~ (3.2)

Proof. For each propositional variable X;, the class [X;] is an element of the Lindebaum
algebra L. Let « € FORM with Var(a) C {X;,,...,X;, }. Then by induction on the

number of connectives in « we have
o (X)L [X,]) = [o] (3.3)

Thus, if « € FORM is not provable, then [a] # 1, whence ol ([X;,],...,[X;,]) # 1. In
other words, the Lindenbaum algebra L does not satisfy the equation a« = 1. Then, by
Chang’s completeness theorem 1.3.5, the MV-algebra [0,1] does not satisfy the equation

a =1, i.e. o is not a tautology. O

Differently by the classical logic, the traditional semantic relation = in Lo, fails to be
strongly complete. In lemma 3.1.3 we have proved the inclusion ©F C ©F but, as we shall
see, in general, OF # ©". The differential properties of fp, for all p € © are ignored by the
semantic consequence relation = that we have already defined, although they have no less
semantical content than the truth-value f,(V). The following example involves formulas in

one variable and it shows as the Bolzano-Tarski paradigm does not work in L.
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Example 3.1.5. Suppose © C FORM; and suppose O is satisfied by a unique valuation
V € [0,1] with V < 1 and V € Q. Suppose that 9f,/0XT(V)=0 for all p € ©. Let
g = ¢(X) be a formula with f,(V) = 1 and f,(W) < 1 for all W > V. Intuitively the
hypothesis means that each p € © is also true for all W > V sufficiently close to V. In
other words, p is ’stably’ true at V. Instead g misses this stability property, although ¢ is
a semantic consequence of ©. It should be noted that © t/ ¢, in fact if we suppose © F p
(absurdum hypothesis) then, by compactness, there is a finite subset {61,6s,...,60;} C 0
such that {61,0s,...,60,} - p. By our hypothesis on O, each 6; is stably true at V, but p

is only true at V, then {61,...,0;} £ p, in contradiction with lemma 3.1.3. Thus © H p.
Now our aim is to give a necessary and sufficient conditions for © coincides with ©F.

Definition 3.1.6. Each set ®© C FORM determines a filter Fg and an ideal Ig in the

MV-algebra of McNaughton’s function M, defined as follows

L. Fo=({fy|pe®}
2. Ip is the ideal of M generated by the set {1 — f, | p € O}

which correspond, via the isomorphism between M and L, to the filter F'(©) generated by
[©] and the ideal I(©) = F(©)* defined in definition 1.6.7.

Proposition 3.1.7. (i) Let ) + © C FORM. Then ©" =6
(ii) For each p € FORM we have p € ©" iff f, € Fo iff f, € Fg iff f," € Io

Proof. (i). It is easy to check that Oisa theory containing ©. Conversely, let consider
p e é, then 1 — (g2 — ---(gn — p) is a tautology with ¢1,...,¢, € ©. Then by an
induction argument it follows that p € ©". By proposition 1.6.3 (i) © = ©". (ii). It follows

from (i) and proposition 1.6.8. O

Therefore, by proposition 3.1.7 Fg is the set of McNaughton’s functions corresponding
to the syntactic consequences of ©. If © = (), then O is the set of tautologies and the
proposition 3.1.7 can be extended to this case by defining © as the set of all tautologies,

Fgo = {1}, as done in proposition 1.6.8.
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Now consider the set of semantic consequences ©F , we shall associate to this set another
filter in the MV -algebra of McNaughton’s functions M. Previously it is necessary to give

the following definitions.

Definition 3.1.8. Given a set © C FORM with © # (), we can define the close set of
[0,1]
Xo =V, ={x€[0,1]]| f(z) =0for all f € I}

Then, by the definition of Ig and Fg and by proposition 3.1.7
Xo ={z€[0,1]* | fy(z) =1for all ¢ € O} (3.4)
We can define the ideal I® and the filter F© as follows:

I°={feL|f=00nXo}=Jx, (3.5)

FO={feL|f=1onXe}=(lo) (3.6)
In case © = ), Xo = [0,1]“, I® = {0} and F© = {1}.
Proposition 3.1.9. Let © C FORM. Then for allp € FORM
peOF ifff, € F® (3.7)
Proof.

p € OF iff for all V € [0,1]%, if £,(V) = 1 for every ¢ € © then f,(V) =1
iff £, =1 on Xe

iff f, € F©
O

Therefore the filter F© is the filter given by all McNaughton functions corresponding to
semantic consequences of ©.

The following theorem gives a necessary and sufficient condition for @ coincides with ©F.

Theorem 3.1.10. For every © C FORM the following are equivalent:
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(i) The two sets of semantic consequences OF and syntactic consequences ©F coin-

cide.

(i) The ideal Io satisfies the equivalent conditions of theorem 2.4.1 or Ig = M.

Proof.
O = OF iff Io = I® by proposition 3.1.7 and proposition 3.1.9
iff o = Jxo
iff Ie = Jv,
Now apply theorem 2.4.1(i) O

Therefore, recalling the definition of Lindenbaum algebra of ©, the following corollary

is a direct consequence of theorem 3.1.10.

Corollary 3.1.11. The set of semantic consequences OF coincides with the set of syntactic

consequences O if and only if L(©) is semisimple.
Proof. Tt follows from theorem 3.1.10 together with theorem 2.4.1(v). O

Remark 3.1.12. From theorem 3.1.10 and theorem 2.4.2 it follows that the identity
o — oF
holds in the following cases:
(i) when O is maximally consistent (i.e. Ig is maximal);
(ii) when © is finite;
(iii) when © = ©,, is the infinite set of axioms for MV,,-algebras, for n > 1;

(iv) when for each point z in the boundary of Xg the set {zg,x1,...} is linearly

independent if the Q-vectorspace R.
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3.2 Stable consequence relation

As we have observed the classical notion of semantic consequence of a set © of formulas fails
to be strongly complete. In this section we shall give a new notion of semantic consequence,
that turns out to coincide with syntactic consequence, introducing a new and enriched

definition of valuation.

Definition 3.2.1. Forn =1, 2,... and let u = (ug, u1,- .., us) be a (t+1)-uple of elements
of R™ where uy, ..., u; are pairwise orthogonal unit vectors. For each m =1, 2,... let the

t-simplex Ty, ,m € R™ be defined as follows
Tam = conv{ug, uo + u1/m, ug +uy/m +us/m? ... ug +ui/m +us/m? + - - + us/m'}

We say that u is a differential valuation of order ¢t in R™ if for all large m the ¢-simplex

Tu,m is contained in the n-cube [0,1]™.
Proposition 3.2.2. Let u = (ug,u1,...,us) be a differential valuation, then we have
(1) For allm=12,..., Tum 2 Tum+1
(i) For each u-simplex
T = conv{ug, up + €1U1, ..., Uy + €1U1 + + - - €1Us }
there ism =1,2,... such that Ty, CT.

Proof. (i)-(ii) are easily verified by induction. O

Definition 3.2.3. Let u = (ug,u1, ..., u:) be a differential evaluation, we define the subset

P, of M,, as follows
Py ={f € M, | f1(0) D Ty.m for some m}
Proposition 3.2.4. Let u = (ug,u1,...,us) be a differential valuation.
(i) The set Py, is a prime ideal of M, ;

(i) Every prime ideal J of My, has the form J = Py for some differential valuation

V.
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Proof. These two properties follows from proposition 3.2.2 together with proposition 2.5.1

and corollary 2.5.16. O

Remark 3.2.5. Let u = (ug,u1,...,us) be a differential valuation in R™, then the prime

ideals of M,, can be visualized as follows:

(0)

(1)

P, is the maximal ideal of M,, given by all functions of M,, that vanish at ug

(theorem 2.2.4);

Plyg,uy) is the prime ideal of M,, given by all functions of M,, that vanish on an
interval of the form

conv{ug, up + u1/m}

for some integer m > 0. Equivalently, P, is given by all functions f € M, such

that f(up) =0 and Jf(ug)/Ou; = 0;

Plug,uy,uz) is the prime ideal of M,, given by all functions of M, that vanish on a

set of the form
conv{ug, uo + uy /m, up + uy/m + us/m?}

for some integer m > 0. Equivalently Py, 4, u,) is given by all functions f € M,
such that f vanishes on an interval of the form conv{ug,uo + u1/m}, for some

integer m > 0, and Jf(y)/Ouz = 0 for all y € relint(conv{ug, ug + ui/m}).

Py, ..., u) is the prime ideal of M, given by all f € M, such that, for some

integer m > 0, f vanishes on the (¢t — 1)-simplex
T = conv{ug,ug +ui/m,...,up +ui/m+---us/m'}

and Of (y)/0us = 0 for all y € relint(T).

Observe that Puo :_) P(uoﬂn) :_> :_) P(uo,...,ut)~

Definition 3.2.6. Let u = (uq, us, ..., u:) be a differential valuation in R™ and let ¢(X7, . ..

be a formula. We say that u satisfies ¢ if 1 — f4 € P,. Thus

folwg) =1 Ofy(up)/Our =0
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and 1 — f, satisfies the conditions (2) through (¢) in remark 3.2.5.

Definition 3.2.7. Given © C FORM,, and ¢ € FORM, we say that ¢ is a stable conse-

quence of ©, in symbols

O Fs0

if ¢ is satisfied by every differential valuation u = (uo,...,us) that satisfies every 6 € ©.

Remark 3.2.8. Observe that the traditional valuation coincides with differential valuation
of order 0, therefore © |= ¢ if and only if ¢ is satisfied by every differential valuation of
order 0 which satisfies every 6 € ©. Therefore if © =5 ¢ then O = ¢.

Theorem 3.2.9. Given © C FORM,, and ¢ € FORM,,, then
OFs¢ & OF¢

Proof. Let Ig = (1 — fo | 6 € O) be the ideal of M,, generated by the functions given by
all negations of formulas in ©.
OF ¢iff 1 — fy € Io by proposition 3.1.7

iff 1 — f4 belongs to every prime ideal P 2 Ig by corollary 1.1.30

iff 1 — f; belongs to every prime ideal P such that 1 — fy € P V8 € ©

iff for every differential valutation uin R", if 1 — fg € P, V8 € O then 1 — f, € Py,

by proposition 3.2.4
iff ¢ is satisfied by all differential valuation u satisfying all § € ©, by definition 3.2.6

iff © =5 ¢

By theorem 3.2.9, we have the following result which states the compactness of |=5.

Corollary 3.2.10. Let © C FORM,, and ¢ € FORM,,. Then

O o ¢ if and only if {61,...,60} Fo o

for some finite set {61,...,0;} C ©.
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Since FORM,, C FORM,,;1, it seems that the definition of © =y ¢ depends on n, so
that we might use a more accurate notation © g ¢. Nevertheless, the following proposition

shows that this extra notation is not necessary.

Proposition 3.2.11. Let © C FORM,, and ¢ € FORM,,. Then for any m > n

O Eno ¢ if and only if © =0 ¢

Proof. One implication is trivial. Conversely, if we suppose that © =, 5 ¢, since ¢ and ©
are built from a finite set of n > 1 variables, for the truth of ¢ we need only a finite subset

of these variables. Hence © =, 5 ¢. O

Definition 3.2.12. Given a set © C FORM,,, we denote with ©F2 the set of all stable

consequences of O, in symbols
OF? = {¢ € FORM,, | © =5 ¢}

Theorem 3.2.13. Let © C FORM,,. Then L(©) is semisimple if and only if OF =
OF9 = ©". Thus L(©) is not semisimple if and only if there is ¢ € FORM, such that
every differential valuation of order 0 satisfying © satisfies ¢ and there is a differential

valuation u satisfying © but not ¢.
Proof. By corollary 3.1.11 together with theorem 3.2.9. O

Theorem 3.2.14. Let © C FORM,,. Then L(O) is strongly semisimple if and only if for
all p € FORM,,

(OU{sh)~ = (U s}

Proof. For any ©’ such that ® C ©’ C O, by proposition 3.1.7 and proposition 1.6.8, we
have L(©) = L(©') = L(6"). Whence, without loss of generality, we can assume © = OF.
Therefore the set {1 — fy | @ € O} is the ideal Ig of M,,. Since the map

L:_EEL(@)ﬁl_fQSEMn

is an isomorphism, the principal ideal =g) of L(©®) corresponds via ¢ to the principal
p > p p p p p

ideal ({1 — fy}/Io) of M,,/Io. Then we have the identities
L—foy _ 0= fo) _ o U{l—fs})
< Io >_

Io To
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Therefore L(©) is strongly semisimple iff M, /Ig is strongly semisimple iff for any principal
ideal (Ig U{1 — fy})/Ie of M,, the quotient

Mn/I@ ~ Mn

o U{l=fs})/le (IoU{l— fs})

is semisimple. It is equivalent to say that L(©U{¢}) is semisimple for every ¢ € FORM,,.
Therefore, by theorem 3.2.9, L(©) is strongly semisimple iff (OU{¢})= = (OU{s})Fo. O
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